2024-01-31 13:22:12 +08:00
|
|
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
|
|
|
|
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
|
2024-02-13 02:04:54 +08:00
|
|
|
from typing import Any, Callable, Optional
|
2024-01-31 13:22:12 +08:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.export
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from torch_mlir.extras.fx_importer import FxImporter
|
2024-02-13 08:10:57 +08:00
|
|
|
from torch_mlir.extras.fx_importer import SparsityMeta
|
2024-01-31 13:22:12 +08:00
|
|
|
from torch_mlir import ir
|
|
|
|
from torch_mlir.dialects import torch as torch_d
|
2024-02-13 02:04:54 +08:00
|
|
|
from torch_mlir.compiler_utils import run_pipeline_with_repro_report
|
|
|
|
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import (
|
|
|
|
RefBackendLinalgOnTensorsBackend,
|
|
|
|
)
|
2024-01-31 13:22:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
# All sparse layouts currently supported in torch.sparse.
|
|
|
|
SPARSE_LAYOUTS = [
|
|
|
|
torch.sparse_coo,
|
|
|
|
torch.sparse_csr,
|
|
|
|
torch.sparse_csc,
|
|
|
|
torch.sparse_bsr,
|
2024-02-13 02:04:54 +08:00
|
|
|
torch.sparse_bsc,
|
2024-01-31 13:22:12 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
|
2024-02-13 08:10:57 +08:00
|
|
|
def sparse_metadata(a: torch.Tensor) -> SparsityMeta:
|
2024-02-24 03:57:20 +08:00
|
|
|
"""
|
|
|
|
Returns a meta data tuple for the given sparse tensor.
|
|
|
|
|
|
|
|
NOTE: this will be fully replaced by fx graph SparseTensorMetadata
|
|
|
|
"""
|
2024-02-13 08:10:57 +08:00
|
|
|
sparse_dim = a.sparse_dim()
|
|
|
|
dense_dim = a.dense_dim()
|
|
|
|
batch_dim = a.ndim - dense_dim - sparse_dim
|
2024-02-24 03:57:20 +08:00
|
|
|
blocksize = None
|
2024-02-13 02:04:54 +08:00
|
|
|
if a.layout is torch.sparse_coo:
|
2024-02-13 08:10:57 +08:00
|
|
|
return SparsityMeta(
|
2024-02-13 02:04:54 +08:00
|
|
|
a.layout,
|
2024-02-13 08:10:57 +08:00
|
|
|
batch_dim,
|
|
|
|
sparse_dim,
|
|
|
|
dense_dim,
|
2024-02-24 03:57:20 +08:00
|
|
|
blocksize,
|
|
|
|
a.indices().dtype,
|
|
|
|
a.indices().dtype,
|
2024-02-13 02:04:54 +08:00
|
|
|
)
|
|
|
|
elif a.layout is torch.sparse_csr or a.layout is torch.sparse_bsr:
|
2024-02-24 03:57:20 +08:00
|
|
|
if a.layout is torch.sparse_bsr:
|
|
|
|
blocksize = a.values().shape[batch_dim + 1 : batch_dim + 3]
|
2024-02-13 08:10:57 +08:00
|
|
|
return SparsityMeta(
|
2024-02-13 02:04:54 +08:00
|
|
|
a.layout,
|
2024-02-13 08:10:57 +08:00
|
|
|
batch_dim,
|
|
|
|
sparse_dim,
|
|
|
|
dense_dim,
|
2024-02-24 03:57:20 +08:00
|
|
|
blocksize,
|
|
|
|
a.crow_indices().dtype,
|
|
|
|
a.col_indices().dtype,
|
2024-02-13 02:04:54 +08:00
|
|
|
)
|
|
|
|
elif a.layout is torch.sparse_csc or a.layout is torch.sparse_bsc:
|
2024-02-24 03:57:20 +08:00
|
|
|
if a.layout is torch.sparse_bsc:
|
|
|
|
blocksize = a.values().shape[batch_dim + 1 : batch_dim + 3]
|
2024-02-13 08:10:57 +08:00
|
|
|
return SparsityMeta(
|
2024-02-13 02:04:54 +08:00
|
|
|
a.layout,
|
2024-02-13 08:10:57 +08:00
|
|
|
batch_dim,
|
|
|
|
sparse_dim,
|
|
|
|
dense_dim,
|
2024-02-24 03:57:20 +08:00
|
|
|
blocksize,
|
|
|
|
a.ccol_indices().dtype,
|
|
|
|
a.row_indices().dtype,
|
2024-02-13 02:04:54 +08:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise RuntimeError(f"Unsupported sparse layout for {a}")
|
|
|
|
|
|
|
|
|
|
|
|
def sparse_export(
|
|
|
|
f: Callable, args: tuple[Any, ...], kwargs: Optional[dict[str, Any]] = None
|
|
|
|
) -> torch.export.ExportedProgram:
|
2024-01-31 13:22:12 +08:00
|
|
|
"""
|
|
|
|
This is a ***temporary*** wrapper around `torch.export.export`
|
|
|
|
that eventually should be removed and simply replaced by the
|
|
|
|
standard API for exporting traced graphs.
|
|
|
|
|
|
|
|
But until issue
|
|
|
|
|
|
|
|
https://github.com/pytorch/pytorch/pull/117907
|
|
|
|
|
|
|
|
is addressed, this wrapper provides support for the sparse
|
|
|
|
tensor types by first converting all operands to dense tensors,
|
|
|
|
building the traced graph as for the dense case, and then
|
|
|
|
annotation sparse parameters with their actual sparse layout
|
|
|
|
attributes. This temporary solution accelerates testing
|
|
|
|
torch-mlir with PyTorch sparse tensors until the issue is
|
2024-02-17 05:02:00 +08:00
|
|
|
resolved.
|
2024-01-31 13:22:12 +08:00
|
|
|
"""
|
|
|
|
# Convert all arguments to dense.
|
2024-02-13 02:04:54 +08:00
|
|
|
dargs = tuple(a.to_dense() if a.layout in SPARSE_LAYOUTS else a for a in args)
|
|
|
|
mask = [a.layout in SPARSE_LAYOUTS for a in args]
|
2024-01-31 13:22:12 +08:00
|
|
|
# Build the regular FX traced graph with only dense arguments
|
|
|
|
# (the current version would crash otherwise, see issue above).
|
|
|
|
prog = torch.export.export(f, dargs, kwargs, constraints=None)
|
2024-02-13 08:10:57 +08:00
|
|
|
# Annotate sparse arguments in the graph. Note that we currently
|
|
|
|
# only account for sparsity defined by the user inputs to the model.
|
|
|
|
# TODO: support sparsity in model parameters (weights, biases)
|
|
|
|
# TODO: propagate sparsity into the layers
|
|
|
|
specs = prog.graph_signature.input_specs
|
|
|
|
alen = len(specs)
|
|
|
|
k = 0
|
2024-01-31 13:22:12 +08:00
|
|
|
for i, node in enumerate(prog.graph.nodes):
|
2024-02-13 08:10:57 +08:00
|
|
|
if i >= alen:
|
|
|
|
break
|
|
|
|
spec = specs[i]
|
|
|
|
if spec.kind is torch.export.graph_signature.InputKind.USER_INPUT:
|
|
|
|
if mask[k]:
|
|
|
|
node.meta["sparsity"] = sparse_metadata(args[k])
|
|
|
|
k = k + 1
|
2024-01-31 13:22:12 +08:00
|
|
|
return prog
|
|
|
|
|
|
|
|
|
|
|
|
def export_and_import(f, *args, **kwargs):
|
|
|
|
"""This method implements Stella's importer, stripped down to essentials."""
|
|
|
|
context = ir.Context()
|
|
|
|
torch_d.register_dialect(context)
|
|
|
|
fx_importer = FxImporter(context=context)
|
|
|
|
prog = sparse_export(f, args, kwargs)
|
[fx] Support mutation in ExportedProgram. (#2916)
As of https://github.com/pytorch/pytorch/pull/118969, `ExportedProgram`
has the long awaited fixes to correctly categorize various things
relating to parameters, buffers, mutated inputs and constants.
With this additional modeling, we are finally able to implement
(safely/soundly) the mutable semantics that were attempted on the
TorchScript path. The difference is that on that path, we had to
conservatively treat everything as mutable and run some dodgy heuristics
(which have been the cause of many bugs relating to
"MaximizeValueSemantics") to try to get back to an immutable state.
The new model supports mutability at the graph edges, allowing both user
inputs and buffers to be mutated (there is some more support than that,
but that is all I fully tracked through to implementation).
Therefore, when we receive programs like this, we now can selectively
enable mutation at the edges. This happens to be the mutability model
that IREE supports, which I expect to be a primary beneficiary. However,
there is nothing stopping anyone else from handling the `!torch.tensor`
types and the existing copy/overwrite ops that will be selectively
added.
Since this relies on API changes that will not release until 2.3, I'm
being a bit cautious about not refactoring existing facilities.
2024-02-17 01:46:30 +08:00
|
|
|
fx_importer.import_frozen_program(prog)
|
2024-02-13 02:04:54 +08:00
|
|
|
return fx_importer.module
|
|
|
|
|
|
|
|
|
|
|
|
def sparse_jit(f, *args, **kwargs):
|
|
|
|
"""This method compiles and runs the given callable using linalg backend."""
|
|
|
|
# Import module and lower into Linalg IR.
|
|
|
|
module = export_and_import(f, *args, *kwargs)
|
|
|
|
run_pipeline_with_repro_report(
|
|
|
|
module,
|
2024-02-28 03:49:32 +08:00
|
|
|
(
|
|
|
|
"builtin.module("
|
|
|
|
"func.func(torch-decompose-complex-ops),"
|
|
|
|
"torch-backend-to-linalg-on-tensors-backend-pipeline)"
|
|
|
|
),
|
2024-02-13 02:04:54 +08:00
|
|
|
"Lowering TorchFX IR -> Linalg IR",
|
|
|
|
enable_ir_printing=False,
|
|
|
|
)
|
|
|
|
# Compile with reference Linalg backend.
|
|
|
|
backend = RefBackendLinalgOnTensorsBackend()
|
|
|
|
compiled = backend.compile(module)
|
|
|
|
invoker = backend.load(compiled)
|
|
|
|
# Prepare input parameters. Sparse input tensors are split into
|
|
|
|
# their composite tensors. All PyTorch tensors are converted
|
|
|
|
# to their backing numpy arrays.
|
|
|
|
#
|
|
|
|
# TODO: sparse output tensors
|
|
|
|
#
|
|
|
|
xargs = []
|
|
|
|
for a in args:
|
|
|
|
if a.layout is torch.sparse_coo:
|
|
|
|
xargs.append(a.values().numpy())
|
2024-02-29 08:08:37 +08:00
|
|
|
# Construct the additional position array required by MLIR with data
|
|
|
|
# array([0, nnz]).
|
|
|
|
xargs.append(torch.tensor([0, a._nnz()], dtype=a.indices().dtype).numpy())
|
|
|
|
# Transform a tensor<ndim x nnz> into [tensor<nnz> x ndim] to conform
|
|
|
|
# MLIR SoA COO representation.
|
|
|
|
for idx in a.indices():
|
|
|
|
xargs.append(idx.numpy())
|
2024-02-13 02:04:54 +08:00
|
|
|
elif a.layout is torch.sparse_csr or a.layout is torch.sparse_bsr:
|
|
|
|
xargs.append(a.values().numpy())
|
|
|
|
xargs.append(a.crow_indices().numpy())
|
|
|
|
xargs.append(a.col_indices().numpy())
|
|
|
|
elif a.layout is torch.sparse_csc or a.layout is torch.sparse_bsc:
|
|
|
|
xargs.append(a.values().numpy())
|
|
|
|
xargs.append(a.ccol_indices().numpy())
|
|
|
|
xargs.append(a.row_indices().numpy())
|
|
|
|
else:
|
|
|
|
xargs.append(a.numpy())
|
|
|
|
# Invoke.
|
|
|
|
return invoker.main(*xargs)
|
2024-01-31 13:22:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def run(f):
|
|
|
|
print(f"{f.__name__}")
|
|
|
|
print("-" * len(f.__name__))
|
|
|
|
f()
|
|
|
|
print()
|
|
|
|
|
|
|
|
|
|
|
|
@run
|
|
|
|
# CHECK-LABEL: test_sparse_sum
|
2024-02-13 02:04:54 +08:00
|
|
|
# CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64 }>
|
2024-01-31 13:22:12 +08:00
|
|
|
# CHECK: func.func @main(
|
|
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32> {
|
|
|
|
# CHECK: %[[N:.*]] = torch.constant.none
|
|
|
|
# CHECK: %[[R:.*]] = torch.aten.sum %[[A]], %[[N]] : !torch.vtensor<[64,64],f32,#[[$CSR]]>, !torch.none -> !torch.vtensor<[],f32>
|
|
|
|
# CHECK: return %[[R]] : !torch.vtensor<[],f32>
|
|
|
|
# CHECK: }
|
2024-02-13 02:04:54 +08:00
|
|
|
#
|
|
|
|
# CHECK: torch.sparse = tensor(4096.)
|
|
|
|
# CHECK: torch.mlir = 4096.0
|
|
|
|
#
|
2024-01-31 13:22:12 +08:00
|
|
|
def test_sparse_sum():
|
|
|
|
class SumNet(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(SumNet, self).__init__()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x.sum()
|
|
|
|
|
2024-02-28 03:49:32 +08:00
|
|
|
net = SumNet()
|
2024-02-13 02:04:54 +08:00
|
|
|
dense_input = torch.ones(64, 64)
|
2024-01-31 13:22:12 +08:00
|
|
|
sparse_input = dense_input.to_sparse_csr()
|
2024-02-28 03:49:32 +08:00
|
|
|
m = export_and_import(net, sparse_input)
|
2024-01-31 13:22:12 +08:00
|
|
|
print(m)
|
|
|
|
|
2024-02-13 02:04:54 +08:00
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
|
|
res1 = net(sparse_input)
|
|
|
|
res2 = sparse_jit(net, sparse_input)
|
|
|
|
print("torch.sparse =", res1)
|
|
|
|
print("torch.mlir =", res2)
|
|
|
|
|
2024-01-31 13:22:12 +08:00
|
|
|
|
2024-02-24 03:57:20 +08:00
|
|
|
@run
|
|
|
|
# CHECK-LABEL: test_sparse_SpMV
|
|
|
|
# CHECK: #[[$BSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense), posWidth = 64, crdWidth = 64 }>
|
|
|
|
# CHECK: func.func @main(
|
|
|
|
# CHECK-SAME: %[[A:.*0]]: !torch.vtensor<[10,10],f32,#[[$BSR]]>,
|
|
|
|
# CHECK-SAME: %[[B:.*1]]: !torch.vtensor<[10],f32>) -> !torch.vtensor<[10],f32> {
|
|
|
|
# CHECK: %[[R:.*]] = torch.aten.mv %[[A]], %[[B]] : !torch.vtensor<[10,10],f32,#[[$BSR]]>, !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
|
|
|
# CHECK: return %[[R]] : !torch.vtensor<[10],f32>
|
|
|
|
# CHECK: }
|
2024-02-28 03:49:32 +08:00
|
|
|
#
|
|
|
|
# CHECK: torch.sparse = tensor([55., 55., 55., 55., 55., 55., 55., 55., 55., 55.])
|
|
|
|
# CHECK: torch.mlir = [55. 55. 55. 55. 55. 55. 55. 55. 55. 55.]
|
|
|
|
#
|
2024-02-24 03:57:20 +08:00
|
|
|
def test_sparse_SpMV():
|
|
|
|
class SpMVNet(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(SpMVNet, self).__init__()
|
|
|
|
|
|
|
|
def forward(self, x, v):
|
|
|
|
return torch.mv(x, v)
|
|
|
|
|
2024-02-28 03:49:32 +08:00
|
|
|
net = SpMVNet()
|
|
|
|
dense_vector = torch.arange(1, 11, dtype=torch.float32)
|
2024-02-24 03:57:20 +08:00
|
|
|
dense_input = torch.ones(10, 10)
|
|
|
|
sparse_input = dense_input.to_sparse_bsr(blocksize=(2, 2))
|
2024-02-28 03:49:32 +08:00
|
|
|
m = export_and_import(net, sparse_input, dense_vector)
|
2024-02-24 03:57:20 +08:00
|
|
|
print(m)
|
|
|
|
|
2024-02-28 03:49:32 +08:00
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
|
|
res1 = net(sparse_input, dense_vector)
|
|
|
|
res2 = sparse_jit(net, sparse_input, dense_vector)
|
|
|
|
print("torch.sparse =", res1)
|
|
|
|
print("torch.mlir =", res2)
|
|
|
|
|
2024-02-24 03:57:20 +08:00
|
|
|
|
2024-01-31 13:22:12 +08:00
|
|
|
@run
|
|
|
|
# CHECK-LABEL: test_sparse_SpMM
|
2024-02-29 08:08:37 +08:00
|
|
|
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
2024-01-31 13:22:12 +08:00
|
|
|
# CHECK: func.func @main(
|
2024-02-13 02:04:54 +08:00
|
|
|
# CHECK-SAME: %[[A:.*0]]: !torch.vtensor<[8,8],f32,#[[$COO]]>,
|
|
|
|
# CHECK-SAME: %[[B:.*1]]: !torch.vtensor<[8,8],f32>) -> !torch.vtensor<[8,8],f32> {
|
|
|
|
# CHECK: %[[R:.*]] = torch.aten.mm %[[A]], %[[B]] : !torch.vtensor<[8,8],f32,#[[$COO]]>, !torch.vtensor<[8,8],f32> -> !torch.vtensor<[8,8],f32>
|
|
|
|
# CHECK: return %[[R]] : !torch.vtensor<[8,8],f32>
|
2024-01-31 13:22:12 +08:00
|
|
|
# CHECK: }
|
2024-02-13 02:04:54 +08:00
|
|
|
#
|
|
|
|
# CHECK: torch.sparse
|
|
|
|
# CHECK: tensor({{\[}}[8., 8., 8., 8., 8., 8., 8., 8.],
|
|
|
|
# CHECK-COUNT-6: [8., 8., 8., 8., 8., 8., 8., 8.],
|
|
|
|
# CHECK: [8., 8., 8., 8., 8., 8., 8., 8.]{{\]}})
|
|
|
|
# CHECK: torch.mlir
|
|
|
|
# CHECK: {{\[}}[8. 8. 8. 8. 8. 8. 8. 8.]
|
|
|
|
# CHECK-COUNT-6: [8. 8. 8. 8. 8. 8. 8. 8.]
|
|
|
|
# CHECK: [8. 8. 8. 8. 8. 8. 8. 8.]{{\]}}
|
|
|
|
#
|
2024-01-31 13:22:12 +08:00
|
|
|
def test_sparse_SpMM():
|
|
|
|
class MatMulNet(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(MatMulNet, self).__init__()
|
|
|
|
|
|
|
|
def forward(self, x, y):
|
2024-02-13 02:04:54 +08:00
|
|
|
return torch.matmul(x, y)
|
2024-01-31 13:22:12 +08:00
|
|
|
|
2024-02-28 03:49:32 +08:00
|
|
|
net = MatMulNet()
|
2024-02-13 02:04:54 +08:00
|
|
|
dense_input = torch.ones(8, 8)
|
2024-01-31 13:22:12 +08:00
|
|
|
sparse_input = dense_input.to_sparse_coo()
|
2024-02-28 03:49:32 +08:00
|
|
|
m = export_and_import(net, sparse_input, dense_input)
|
2024-01-31 13:22:12 +08:00
|
|
|
print(m)
|
2024-02-13 02:04:54 +08:00
|
|
|
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
|
|
res1 = net(sparse_input, dense_input)
|
|
|
|
res2 = sparse_jit(net, sparse_input, dense_input)
|
|
|
|
print("torch.sparse")
|
|
|
|
print(res1)
|
|
|
|
print("torch.mlir")
|
|
|
|
print(res2)
|
2024-02-13 08:10:57 +08:00
|
|
|
|
|
|
|
|
|
|
|
@run
|
|
|
|
# CHECK-LABEL: test_sparse_eltwise
|
|
|
|
# CHECK: #[[$BCSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed), posWidth = 64, crdWidth = 64 }>
|
|
|
|
# CHECK: func.func @main(
|
|
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,4,2],f32,#[[$BCSR]]>) -> !torch.vtensor<[8,4,2],f32> {
|
|
|
|
# CHECK: %[[R:.*]] = torch.aten.neg %arg0 : !torch.vtensor<[8,4,2],f32,#[[$BCSR]]> -> !torch.vtensor<[8,4,2],f32>
|
|
|
|
# CHECK: return %[[R]] : !torch.vtensor<[8,4,2],f32>
|
|
|
|
# CHECK: }
|
|
|
|
# CHECK: #[[$CSRD:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense), posWidth = 64, crdWidth = 64 }>
|
|
|
|
# CHECK: func.func @main(
|
|
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,4,2],f32,#[[$CSRD]]>) -> !torch.vtensor<[8,4,2],f32> {
|
|
|
|
# CHECK: %[[R:.*]] = torch.aten.neg %arg0 : !torch.vtensor<[8,4,2],f32,#[[$CSRD]]> -> !torch.vtensor<[8,4,2],f32>
|
|
|
|
# CHECK: return %[[R]] : !torch.vtensor<[8,4,2],f32>
|
|
|
|
# CHECK: }
|
2024-02-14 05:42:56 +08:00
|
|
|
#
|
|
|
|
# CHECK: torch.sparse
|
|
|
|
# CHECK: tensor(crow_indices=tensor([ 0, 4, 8, 12, 16, 20, 24, 28, 32]),
|
|
|
|
# CHECK: col_indices=tensor([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1,
|
|
|
|
# CHECK: 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]),
|
|
|
|
# CHECK: values=tensor({{\[}}[ -1., -2.],
|
|
|
|
# CHECK: [ -3., -4.],
|
|
|
|
# ...
|
|
|
|
# CHECK: [-63., -64.]{{\]}}), size=(8, 4, 2), nnz=32,
|
|
|
|
# CHECK: layout=torch.sparse_csr)
|
|
|
|
# CHECK: torch.mlir
|
|
|
|
# CHECK: {{\[\[}}[ -1. -2.]
|
|
|
|
# CHECK: [ -3. -4.]
|
|
|
|
# ...
|
|
|
|
# CHECK: [-61. -62.]
|
|
|
|
# CHECK: [-63. -64.]{{\]\]}}
|
2024-02-28 03:49:32 +08:00
|
|
|
#
|
2024-02-13 08:10:57 +08:00
|
|
|
def test_sparse_eltwise():
|
|
|
|
class EltNet(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(EltNet, self).__init__()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return -x
|
|
|
|
|
2024-02-28 03:49:32 +08:00
|
|
|
net = EltNet()
|
2024-02-14 05:42:56 +08:00
|
|
|
dense_input = torch.reshape(
|
|
|
|
torch.arange(1, 65, dtype=torch.float32), shape=(8, 4, 2)
|
|
|
|
)
|
2024-02-13 08:10:57 +08:00
|
|
|
|
|
|
|
# This yields a **batched** CSR.
|
|
|
|
sparse_input = dense_input.to_sparse_csr(dense_dim=0)
|
2024-02-28 03:49:32 +08:00
|
|
|
m = export_and_import(net, sparse_input)
|
2024-02-13 08:10:57 +08:00
|
|
|
print(m)
|
|
|
|
|
|
|
|
# This yields a plain CSR with dense **sub**tensor
|
|
|
|
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
|
2024-02-28 03:49:32 +08:00
|
|
|
m = export_and_import(net, sparse_input)
|
2024-02-13 08:10:57 +08:00
|
|
|
print(m)
|
2024-02-14 05:42:56 +08:00
|
|
|
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
|
|
#
|
|
|
|
# TODO: note several issues that need to be fixed
|
|
|
|
# (1) since we do not propagate sparsity into elt-wise, MLIR returns dense result
|
|
|
|
# (2) for dense_dim=0, this will need a dense(batched) property
|
|
|
|
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
|
|
|
|
res1 = net(sparse_input)
|
|
|
|
res2 = sparse_jit(net, sparse_input)
|
|
|
|
print("torch.sparse")
|
|
|
|
print(res1)
|
|
|
|
print("torch.mlir")
|
|
|
|
print(res2)
|