torch-mlir/python/torch_mlir/extras/fx_importer.py

1348 lines
50 KiB
Python
Raw Normal View History

[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
# Copyright 2023 Advanced Micro Devices, Inc
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
try:
from types import NoneType
except ImportError:
# python less than 3.10 doesn't have NoneType
NoneType = type(None)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
import logging
import operator
import re
from dataclasses import dataclass
from types import BuiltinMethodType, BuiltinFunctionType
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple, Union
import weakref
import numpy as np
import torch
import torch.export
import torch.fx as torch_fx
from torch.fx.passes.shape_prop import TensorMetadata
from torch import (
dtype as TorchDtype,
FunctionSchema,
)
from torch._ops import (
OpOverload as TorchOpOverload,
)
from torch._subclasses import (
FakeTensor as TorchFakeTensor,
)
from torch.fx import (
Graph,
GraphModule,
)
from torch.fx.node import (
Argument as NodeArgument,
)
from ..ir import (
Attribute,
Block,
Context,
DenseElementsAttr,
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
DenseResourceElementsAttr,
FloatAttr,
BF16Type,
ComplexType,
F16Type,
F32Type,
F64Type,
FunctionType,
InsertionPoint,
IntegerAttr,
IntegerType,
RankedTensorType,
Location,
Module,
Operation,
StringAttr,
SymbolTable,
Type as IrType,
Value,
)
from ..dialects import (
func as func_dialect,
)
__all__ = [
"FxImporter",
]
# An external callback that, given a Python value and a GraphNodeImporter, may choose
# to materialize IR to load the value as a vtensor. If it returns None, then default
# literal resolution proceeds.
LiteralResolverCallback = Callable[[Any, "GraphNodeImporter"], Optional[Value]]
REQUIRED_DIALCTS = [
"builtin",
"func",
"torch",
]
TORCH_DTYPE_TO_MLIR_TYPE_ASM = {
torch.float16: "f16",
torch.bfloat16: "bf16",
torch.float32: "f32",
torch.float64: "f64",
torch.uint8: "ui8",
torch.int8: "si8",
torch.int16: "si16",
torch.int32: "si32",
torch.int64: "si64",
torch.bool: "i1",
torch.qint8: "!torch.qint8",
torch.quint8: "!torch.quint8",
torch.complex32: "complex<f16>",
torch.complex64: "complex<f32>",
torch.complex128: "complex<f64>",
}
TORCH_DTYPE_TO_MLIR_TYPE: Dict[torch.dtype, Callable[[], IrType]] = {
torch.float16: lambda: F16Type.get(),
torch.bfloat16: lambda: BF16Type.get(),
torch.float32: lambda: F32Type.get(),
torch.float64: lambda: F64Type.get(),
torch.uint8: lambda: IntegerType.get_unsigned(8),
torch.int8: lambda: IntegerType.get_signed(8),
torch.int16: lambda: IntegerType.get_signed(16),
torch.int32: lambda: IntegerType.get_signed(32),
torch.int64: lambda: IntegerType.get_signed(64),
torch.bool: lambda: IntegerType.get_signless(1),
torch.qint8: lambda: IntegerType.get_signed(8),
torch.quint8: lambda: IntegerType.get_unsigned(8),
torch.complex32: lambda: ComplexType.get(F16Type.get()),
torch.complex64: lambda: ComplexType.get(F32Type.get()),
torch.complex128: lambda: ComplexType.get(F64Type.get()),
}
TORCH_DTYPE_TO_NPY_TYPE = {
# torch.qint8: None, # no equivalent np datatype
# torch.quint8: None,
torch.uint8: np.uint8,
torch.int8: np.int8,
torch.int16: np.int16,
torch.int32: np.int32,
torch.int64: np.int64,
# torch.bf16: None, there's no equivalent np datatype so this isn't supported right now
torch.float16: np.float16,
torch.float32: np.float32,
torch.float64: np.float64,
torch.bool: np.bool_,
# torch.complex32: None, # no equivalent precision for numpy
torch.complex64: np.complex64,
torch.complex128: np.complex128,
}
TORCH_DTYPE_TO_INT = {
torch.uint8: 0,
torch.int8: 1,
torch.int16: 2,
torch.int32: 3,
torch.int64: 4,
torch.float16: 5,
torch.float32: 6,
torch.float64: 7,
# torch.complex_half 8
torch.complex32: 9,
torch.complex64: 10,
torch.bool: 11,
# torch.qint8: 12, # quantized dtypes are not supported in all backends, currently we do not support them
# torch.quint8: 13,
# torch.qint32 14
torch.bfloat16: 15,
}
TORCH_MEMORY_FORMAT_TO_INT = {
torch.contiguous_format: 0,
torch.preserve_format: 1,
torch.channels_last: 2,
torch.channels_last_3d: 3,
}
TORCH_LAYOUT_TO_INT = {
torch.strided: 0,
torch.sparse_coo: 1,
torch.sparse_csr: 2,
torch.sparse_csc: 3,
torch.sparse_bsr: 4,
torch.sparse_bsc: 5,
}
PY_BUILTIN_TO_TORCH_OP = {
"truediv": torch.ops.aten.div,
"mul": torch.ops.aten.mul,
"add": torch.ops.aten.add,
"sub": torch.ops.aten.sub,
"lt": torch.ops.aten.lt,
"le": torch.ops.aten.le,
"ge": torch.ops.aten.ge,
"ne": torch.ops.aten.ne,
"gt": torch.ops.aten.gt,
}
SYMBOLIC_TORCH_OPS = {
torch.ops.aten.sym_size,
torch.ops.aten.sym_stride,
torch.ops.aten.sym_numel,
}
SYMBOLIC_OP_TO_TORCH_OP = {
(torch.ops.aten.sym_size, 1): torch.ops.aten.size.default,
(torch.ops.aten.sym_size, 2): torch.ops.aten.size.int,
(torch.ops.aten.sym_stride, 1): torch.ops.aten.stride.default,
(torch.ops.aten.sym_stride, 2): torch.ops.aten.stride.int,
(torch.ops.aten.sym_numel, 1): torch.ops.aten.numel.default,
}
@dataclass(frozen=True)
class SparsityMeta:
"""Class for keeping track of sparsity meta data."""
layout: torch.layout
batch_dim: int
sparse_dim: int
dense_dim: int
pos_width: int
crd_width: int
def sparsity_encoding(shape: torch.Size, sparsity: SparsityMeta) -> str:
"""Returns sparse tensor encoding for the given sparse layout as string."""
assert sparsity is not None
# Sparse tensors have the form
# [ <batch_dimensions> , <sparse_dimensions>, <dense_dimensions> ]
# which map directly to MLIR types.
batch_dim, sparse_dim, dense_dim = (
sparsity.batch_dim,
sparsity.sparse_dim,
sparsity.dense_dim,
)
dim = batch_dim + sparse_dim + dense_dim
assert dim == len(shape)
dims = ",".join(f"d{d}" for d in range(0, dim))
if sparsity.layout is torch.sparse_coo:
assert sparse_dim == 2 # TODO: deeper sparse dims
lvls = f"d{batch_dim}:compressed(nonunique),d{batch_dim+1}:singleton"
elif sparsity.layout is torch.sparse_csr:
assert sparse_dim == 2
lvls = f"d{batch_dim}:dense,d{batch_dim+1}:compressed"
elif sparsity.layout is torch.sparse_csc:
assert sparse_dim == 2
lvls = f"d{batch_dim+1}:dense,d{batch_dim}:compressed"
else:
# TODO: block format (derive block size!)
raise RuntimeError(f"Unsupported sparse layout {sparse_layout}")
if batch_dim > 0:
batch = ",".join(f"d{d}:dense" for d in range(0, batch_dim))
lvls = f"{batch},{lvls}"
if dense_dim > 0:
dense = ",".join(f"d{d}:dense" for d in range(batch_dim + sparse_dim, dim))
lvls = f"{lvls},{dense}"
posw, crdw = sparsity.pos_width, sparsity.crd_width
return f"#sparse_tensor.encoding<{{map=({dims})->({lvls}),posWidth={posw},crdWidth={crdw}}}>"
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
def is_symbolic(obj: Any) -> bool:
"""Check whether an object in our graph is symbolic"""
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
return isinstance(obj, (torch.SymInt, torch.SymFloat, torch.SymBool))
def is_builtin_function_or_method(obj: Any) -> bool:
return isinstance(obj, (BuiltinMethodType, BuiltinFunctionType))
class FxImporter:
"""Main entry-point for importing an fx.GraphModule.
The FxImporter is a low-level class intended for framework integrators.
It provides several options for customization:
* config_check: Optionally allows some per-import configuration safety
checks to be skipped.
* literal_resolver_callback: Callback that will be invoked when a literal,
live torch.Tensor is encountered in the FX graph, allowing the default
action (which is to inline the data as a DenseResourceElementsAttr) to
be completely overriden.
* py_attr_tracker: Weak reference tracker for live PyTorch objects used
to unique them with respect to attributes. If not specified, there will
be one reference tracker per import, but this can be injected to share
the same uniqueing across imports (i.e. if building multiple functions
into the same context or module).
"""
__slots__ = [
"_c",
"_cc",
"_literal_resolver_callback",
"_m",
"_m_ip",
"_py_attr_tracker",
"symbol_table",
]
def __init__(
self,
*,
module: Optional[Module] = None,
context: Optional[Context] = None,
config_check: bool = True,
literal_resolver_callback: Optional[LiteralResolverCallback] = None,
py_attr_tracker: Optional["RefTracker"] = None,
):
if module is not None:
assert context is None, "If configuring with a Module, context must be None"
self._m = module
self._c = self.module.context
else:
self._c = context if context else Context()
self._m = Module.create(Location.unknown(self._c))
if config_check:
# Production code can disable this for a bit of a boost.
self._config_check()
self._py_attr_tracker = py_attr_tracker or RefTracker()
self._cc = ContextCache(self._c, py_attr_tracker=self._py_attr_tracker)
self._m_ip = InsertionPoint(self._m.body)
self._literal_resolver_callback = literal_resolver_callback
self.symbol_table = SymbolTable(self._m.operation)
def _config_check(self):
for dname in REQUIRED_DIALCTS:
try:
self._c.dialects[dname]
logging.debug("Context has registered dialect '%s'", dname)
except IndexError:
raise RuntimeError(
f"The MLIR context {self._c} is missing required dialect '{dname}'"
)
@property
def module(self) -> Module:
return self._m
@property
def module_op(self) -> Operation:
return self._m.operation
def import_frozen_exported_program(self, prog: torch.export.ExportedProgram):
"""Imports a consolidated torch.export.ExportedProgram instance.
If using the new torch.export path (vs a lower level precursor), then this is
the recommended way to canonically use this importer.
The ExportedProgram form differs from some of the earlier work primarily in
how it deals with references to external tensors from "outside". In this form,
all such references are checked to have originated from within the exported
scope or from an @assume_constant_result wrapped function. Then they are
transformed to graph inputs and stashed in one of two data structures on
the ExportedProgram:
inputs_to_buffers / buffers : For non-parameter buffers.
inputs_to_parameters / parameters : For parameter buffers.
The values of the mapping in inputs_to_{buffers|parameters} are in the
state_dict. This replaces get_attr nodes that would have classically been
present during lower level tracing.
Historically, torch-mlir has assumed that all such external accesses are
frozen, and this entry-point preserves this behavior, treating each distinct
torch.Tensor encountered in such a way as a `torch.vtensor.literal` (or
delegating to the literal_resolver_callback to make a policy decision).
As we anticipate more nuanced treatment options in the future, we name this
method to indicate that it is producing "frozen" modules. Additional top-level
approaches to handling state can be introduced later as an addition.
"""
sig = prog.graph_signature
state_dict = prog.state_dict
arg_replacements: dict[str, Any] = {}
# If there is no "constants" attribute, consult the "state_dict". Otherwise, only look
# at "constants". Relevant upstream patch: https://github.com/pytorch/pytorch/pull/118969
if hasattr(prog, "constants"):
constants = prog.constants
# Lift tensor constants.
for input_name, state_name in sig.inputs_to_lifted_tensor_constants.items():
try:
state_value = constants[state_name]
except KeyError as e:
raise AssertionError("Could not find state mapping for tensor constants") from e
arg_replacements[input_name] = state_value
else:
# Lift buffers.
for input_name, state_name in sig.inputs_to_buffers.items():
try:
state_value = state_dict[state_name]
except KeyError as e:
raise AssertionError("Could not find state mapping for buffer") from e
arg_replacements[input_name] = state_value
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
# Lift parameters.
for input_name, state_name in sig.inputs_to_parameters.items():
try:
state_value = state_dict[state_name]
except KeyError as e:
raise AssertionError(
"Could not find state mapping for parameter"
) from e
arg_replacements[input_name] = state_value
# Remove any lifted placeholders, replacing their uses with the state
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
# replacement value.
g = prog.graph
for node in g.nodes:
if node.op == "placeholder":
replacement = arg_replacements.get(node.name)
if replacement is None:
continue
node.replace_all_uses_with(replacement)
g.erase_node(node)
self.import_stateless_graph(g)
def import_graph_module(self, gm: GraphModule):
"""Low-level import of a GraphModule assuming that it has been functionalized."""
self.import_stateless_graph(gm.graph)
def import_stateless_graph(self, g: Graph, func_name: str = "main"):
"""Low-level import of a functionalized, assumed stateless Graph as a func."""
ftype, loc = self._graph_to_function_meta(g)
# TODO: The FuncOp constructor requires a context-manager context.
# Fix upstream and then unnest.
# See: https://github.com/nod-ai/SHARK-Turbine/issues/138
with loc:
func = func_dialect.FuncOp(
func_name,
ftype,
ip=self._m_ip,
)
entry_block = Block.create_at_start(func.body, ftype.inputs)
node_importer = GraphNodeImporter(
self,
self._c,
self._cc,
entry_block,
literal_resolver_callback=self._literal_resolver_callback,
)
node_importer.import_nodes(g.nodes)
self.symbol_table.insert(func)
def _graph_to_function_meta(self, g: Graph) -> Tuple[FunctionType, Location]:
"""Extracts function metadata from the Graph.
Principally, this includes the FunctionType, but in the future,
it should also return other annotations (input strides, etc) that
affect compilation and should be included as arg attrs.
"""
input_types = []
result_types = []
loc = None
for node in g.nodes:
# Assume that the first node we can get a location for is about as
# good as it gets as an overall function location.
if loc is None:
loc = self._cc.get_node_location(node)
if node.op == "placeholder":
input_types.append(self._cc.node_val_to_type(node))
elif node.op == "output":
# An output node's args[0] is the return value. This seems to
# always be "boxed" as a tuple, which we emit as multi-results.
for result_node in node.args[0]:
if result_node is None:
result_types.append(
IrType.parse("!torch.none", context=self._c)
)
else:
result_types.append(self._cc.node_val_to_type(result_node))
return (
FunctionType.get(input_types, result_types, context=self._c),
loc if loc else Location.unknown(self._c),
)
class ContextCache:
"""Caches per-context lookups of various things that we ask for repeatedly."""
__slots__ = [
"_c",
"_dtype_to_type",
"_tensor_metadata_cache",
"_py_attr_tracker",
# Types.
"torch_bool_type",
"torch_float_type",
"torch_int_type",
"torch_none_type",
"torch_str_type",
"torch_device_type",
]
def __init__(
self, context: Context, *, py_attr_tracker: Optional["RefTracker"] = None
):
self._c = context
self._dtype_to_type: Dict[TorchDtype, IrType] = {}
self._tensor_metadata_cache: Dict[Tuple[torch.Size, torch.dtype], IrType] = {}
self._py_attr_tracker = py_attr_tracker or RefTracker()
# Common types.
with context:
self.torch_bool_type = IrType.parse("!torch.bool")
self.torch_float_type = IrType.parse("!torch.float")
self.torch_int_type = IrType.parse("!torch.int")
self.torch_none_type = IrType.parse("!torch.none")
self.torch_str_type = IrType.parse("!torch.str")
self.torch_device_type = IrType.parse("!torch.Device")
def integer_attr(self, value: int, bits: int) -> Attribute:
c = self._c
return IntegerAttr.get(IntegerType.get_signless(bits, c), value)
"""Strips symbolic elements from a torch.Size object and returns shape asm"""
def format_asm_shape(self, shape: torch.Size) -> str:
return ",".join("?" if is_symbolic(d) else str(d) for d in list(shape))
"""Return IrType for !torch.vtensor with the given shape and dtype"""
def get_vtensor_type(
self,
shape: torch.Size,
dtype: torch.dtype,
*,
sparsity: Optional[SparsityMeta] = None, # keyword-only
):
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
shape_asm = self.format_asm_shape(shape)
mlir_dtype = str(self.dtype_to_type(dtype))
if sparsity is not None:
encoding = sparsity_encoding(shape, sparsity)
assert encoding is not None
return IrType.parse(
f"!torch.vtensor<[{shape_asm}],{str(mlir_dtype)},{encoding}>",
context=self._c,
)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
return IrType.parse(
f"!torch.vtensor<[{shape_asm}],{str(mlir_dtype)}>", context=self._c
)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
def node_val_to_type(self, node: torch_fx.Node) -> IrType:
try:
tensor_meta = node.meta.get("tensor_meta")
val = node.meta.get("val")
sparsity = node.meta.get("sparsity", None)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
if tensor_meta is not None:
assert isinstance(tensor_meta, TensorMetadata)
# Quantized tensor meta data is not preserved in our lowering,
# so throw error instead of silently doing wrong thing.
if tensor_meta.is_quantized:
raise NotImplementedError(
f"Quantized tensor meta data is not supported."
)
else:
return self.tensor_metadata_to_type(tensor_meta, sparsity=sparsity)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
elif val is not None:
# some nodes with symbolic inputs pass a 'val' attribute rather than
# tensor_meta
if isinstance(val, TorchFakeTensor):
return self.get_vtensor_type(
val.size(), val.dtype, sparsity=sparsity
)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
t = SCALAR_TYPE_TO_TORCH_MLIR_TYPE.get(type(val))
if t is not None:
return IrType.parse(t, self._c)
raise NotImplementedError(
f"FIXME: Unsupported placeholder node (this often indicates that a necessary) "
f"fx preprocessing pass was not run): {node.meta}"
)
except KeyError as e:
raise RuntimeError(
f"FIXME: Illegal access to torch.fx.Node.meta: {e} ({node.meta.keys()} : {node.meta})"
)
def tensor_metadata_to_type(
self,
tm: TensorMetadata,
*,
sparsity: Optional[SparsityMeta] = None, # keyword-only
) -> IrType:
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
tm_shape = tuple(
item.node if is_symbolic(item) else item for item in list(tm.shape)
)
key = (tm_shape, tm.dtype, sparsity)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
t = self._tensor_metadata_cache.get(key)
if t is None:
t = self.get_vtensor_type(tm.shape, tm.dtype, sparsity=sparsity)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
self._tensor_metadata_cache[key] = t
return t
def dtype_to_type(self, dtype: TorchDtype) -> IrType:
t = self._dtype_to_type.get(dtype)
if t is None:
try:
asm = TORCH_DTYPE_TO_MLIR_TYPE_ASM[dtype]
except IndexError:
raise ValueError(f"Unknown conversion from {dtype} to IREE type")
t = IrType.parse(asm, self._c)
self._dtype_to_type[dtype] = t
return t
def tensor_to_vtensor_type(self, tensor: torch.Tensor) -> IrType:
dtype_asm = str(self.dtype_to_type(tensor.dtype))
return IrType.parse(f"!torch.vtensor<{list(tensor.size())},{dtype_asm}>")
def get_node_location(self, node: torch_fx.Node) -> Optional[Location]:
stack_trace = node.meta.get("stack_trace")
if stack_trace is None:
return None
# Ugh.
# TODO: Avoid needing to regex match this.
# https://github.com/pytorch/pytorch/issues/91000
stack_trace = node.stack_trace
if stack_trace:
m = re.search(r"""File "([^"]+)", line ([0-9]+),""", stack_trace)
if m:
filename, line = m.group(1), int(m.group(2))
return Location.file(filename, line, col=0, context=self._c)
return Location.unknown(context=self._c)
class GraphNodeImporter:
"""Imports graph nodes into an MLIR function.
The caller must have already created the function.
"""
__slots__ = [
"_b",
"_c",
"_cc",
"_literal_resolver_callback",
"_v",
"_multi_result_nodes",
"fx_importer",
]
def __init__(
self,
fx_importer: FxImporter,
context: Context,
context_cache: ContextCache,
block: Block,
*,
literal_resolver_callback: Optional[LiteralResolverCallback] = None,
):
self.fx_importer = fx_importer
self._c = context
self._cc = context_cache
self._b = block
# Map of (Node, result_index) to MLIR Value.
self._v: Dict[Tuple[torch_fx.Node, int], Value] = {}
# Statically multi-result nodes which we have de-tupled are noted here.
# They will have their getitem calls short-circuited.
self._multi_result_nodes: Set[torch_fx.Node] = set()
self._literal_resolver_callback = literal_resolver_callback
def import_nodes(self, nodes: Sequence[torch_fx.Node]):
with InsertionPoint(self._b):
loc = Location.unknown()
num_placeholders = 0
for node in nodes:
op = node.op
# Attempt to extract locations. Not everything has them,
# so we do our best.
new_loc = self._cc.get_node_location(node)
if new_loc is not None:
loc = new_loc
if op == "placeholder":
# Associate the placeholder node with corresponding block
# argument.
self._v[(node, 0)] = self._b.arguments[num_placeholders]
num_placeholders += 1
elif op == "call_function":
target = node.target
if target == operator.getitem:
# Special case handling of getitem for when it is resolving
# against a function call that we know has returned multiple
# results. We short-circuit this case because we have modeled
# function calls to natively return multiple results vs tupling.
getitem_ref, getitem_index = node.args
if getitem_ref in self._multi_result_nodes:
try:
self._v[(node, 0)] = self._v[
(getitem_ref, getitem_index)
]
except IndexError:
raise RuntimeError(
f"getitem de-aliasing failed. This likely "
f"indicates a programmer error that usually "
f"would have happened at runtime. Please "
f"notify developers if this case happens "
f"(at {loc})."
)
else:
raise NotImplementedError(
f"General getitem access to non-multi-result ops"
)
elif isinstance(target, TorchOpOverload):
# Dispatch to an ATen op.
self._import_torch_op_overload(loc, node, target)
elif target in SYMBOLIC_TORCH_OPS or (
is_symbolic(node.meta.get("val"))
and is_builtin_function_or_method(target)
):
self._import_symbolic_torch_op(loc, node, target)
else:
raise NotImplementedError(
f"FIX ME: Unimplemented call_function: target={node.target}, {node.meta}"
)
elif op == "output":
# args[0] is a singleton tuple that we flatten into multiple
# results.
operands = [self._import_argument(loc, arg) for arg in node.args[0]]
func_dialect.ReturnOp(operands, loc=loc)
def _promote_symbolic_scalar_int_float(self, loc, graph, param):
temp_target = torch.ops.aten.Float.Scalar
temp_node = torch.fx.Node(
graph=graph,
name=f"{str(param)}_as_float",
op="call_function",
target=temp_target,
args=(param,),
kwargs={},
return_type=float,
)
temp_node.meta["val"] = torch.sym_float(param.meta["val"])
self._import_torch_op_overload(loc, temp_node, temp_target)
return temp_node
def _import_symbolic_torch_op(
self,
loc: Location,
node: torch_fx.Node,
target: Union[
torch._ops.OpOverloadPacket, BuiltinMethodType, BuiltinFunctionType
],
):
# parse builtin operations like add, sub, mul, etc. because dynamo captures these
# operations on symbolic arguments as regular python expressions rather than as torch ops
if is_builtin_function_or_method(target):
arg_types = [
(
arg.meta["val"].node.pytype
if isinstance(arg, torch.fx.Node)
else type(arg)
)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
for arg in node.args
]
is_int = [item == int for item in arg_types]
if all(is_int):
op_overload = "int"
elif any(is_int):
if target.__name__ in ("add", "lt", "ge", "ne", "gt"):
op_overload = "float_int"
# put float arg first, as expected in signature
if arg_types[1] == float:
node.args = (node.args[1], node.args[0])
else:
# promote int argument to float - following torch-mlir convention
arg0, arg1 = node.args
if is_int[0]:
if isinstance(arg0, torch.fx.Node):
prom_arg = self._promote_symbolic_scalar_int_float(
loc, node.graph, arg0
)
new_args = (prom_arg, arg1)
else:
arg0 = float(arg0)
new_args = (arg0, arg1)
else:
if isinstance(arg1, torch.fx.Node):
prom_arg = self._promote_symbolic_scalar_int_float(
loc, node.graph, arg1
)
new_args = (arg0, prom_arg)
else:
arg1 = float(arg1)
new_args = (arg0, arg1)
node.args = new_args
op_overload = "float"
else:
op_overload = "float"
torch_op = PY_BUILTIN_TO_TORCH_OP.get(target.__name__)
assert (
torch_op is not None
), f"Unsupported builtin function for symbolic types: {target} with args {node.args}"
concrete_target = getattr(torch_op, op_overload)
else:
concrete_target = SYMBOLIC_OP_TO_TORCH_OP.get((target, len(node.args)))
assert (
concrete_target is not None
), f"Unable to parse symbolic operation: {target} with args {node.args}"
self._import_torch_op_overload(loc, node, concrete_target)
def _import_torch_op_overload(
self, loc: Location, node: torch_fx.Node, target: TorchOpOverload
):
# replace lift_fresh_copy with clone op
if target == torch.ops.aten.lift_fresh_copy.default:
node.target = target = torch.ops.aten.clone.default
node.args = (node.args[0], None)
elif target == torch.ops.aten.lift_fresh_copy.out:
node.target = target = torch.ops.aten.clone.out
node.args = (node.args[0], None, node.args[1])
# TODO: generalize empty.memory_format in the future
# Currently, the aten.baddbmm.default op for Unet includes multiplying an
# empty.memory_format input with a constant, which creates NaN values
# because empty.memory_format contains uninitialized data. Converting
# aten.baddbmm.default -> aten.zeros.default fixes the correctness issue
elif target == torch.ops.aten.empty.memory_format:
if len(node.users) == 1:
for key_node in node.users:
if key_node.target == torch.ops.aten.baddbmm.default:
node.target = target = torch.ops.aten.zeros.default
schema = target._schema
assert isinstance(schema, FunctionSchema)
# Map to a `torch` dialect name.
namespace, sep, unqualified_name = schema.name.partition("::")
assert sep, f"Malformed Torch op name {schema.name}"
mlir_op_name = f"torch.{namespace}.{unqualified_name}"
if schema.overload_name != "":
mlir_op_name += f".{schema.overload_name}"
# Intervening to use Scalar ops due to incorrect ops from AOT-autograd with scalar arguments.
if mlir_op_name in TENSOR_SCALAR_OP_CONVERTER and (
isinstance(node.args[1], float) or isinstance(node.args[1], int)
):
mlir_op_name = TENSOR_SCALAR_OP_CONVERTER[mlir_op_name]
# we are dynamically changing which op is emitted here due to an issue in
# torch dynamo where it emits the Tensor variant of ops even when processing
# scalar arguments, therefore we retrieve the schema as well so that we
# consume the correct typing information when subsequently importing the
# function arguments and result types
# i.e. the code below is basically doing `schema = torch.ops.aten.my_op.Scalar._schema`
op_attrs = mlir_op_name.split(".")
op_overload = getattr(torch, "ops")
for i in range(1, len(op_attrs)):
op_overload = getattr(op_overload, op_attrs[i])
schema = op_overload._schema
return_count = len(schema.returns)
if return_count == 1:
# Unary return directly maps a single meta["val"] and cannot be subscripted.
# if "tensor_meta" is None, this will throw unsupported placeholder node error
result_types = [self._cc.node_val_to_type(node)]
elif return_count == 0:
# Some torch ops do have 0 returns, and these are supported with ZeroResults
# op trait. Python bindings for IR creation allow us to pass empty result_types
# for such ops. Therefore, we pass an empty result types for these cases.
result_types = []
else:
# Multi-return will unpack the meta["val"] and trigger our getitem subscripting
# short-circuit above. Note that if we ever choose to also fully reify Python
# level result tuples, we will need to create a tuple-boxed version of this and
# redirect to it for generic object access.
result_types = []
for v in node.meta["val"]:
result_types.append(self._cc.tensor_metadata_to_type(v))
result_types = tuple(result_types)
self._multi_result_nodes.add(node)
# Unroll operands from formal parameters, args and kwargs.
operands = []
for i, parameter in enumerate(schema.arguments):
if parameter.kwarg_only and parameter.name in node.kwargs:
operands.append(
self._import_argument(
loc, node.kwargs[parameter.name], parameter.type
)
)
elif i < len(node.args):
operands.append(
self._import_argument(loc, node.args[i], parameter.type)
)
else:
operands.append(
self._import_default_value(
loc, parameter.default_value, parameter.type
)
)
# Support unregistered torch ops using torch.operator.
# torch.operator is used to represent ops from registry
# which haven't been generated by torch_ods_gen.py.
if not self._c.is_registered_operation(mlir_op_name):
operation = Operation.create(
"torch.operator",
attributes={"name": StringAttr.get(mlir_op_name)},
results=result_types,
operands=operands,
loc=loc,
)
else:
operation = Operation.create(
mlir_op_name,
results=result_types,
operands=operands,
loc=loc,
)
# Record value mapping.
for i, value in enumerate(operation.results):
self._v[(node, i)] = value
def _import_argument(
self, loc: Location, arg: NodeArgument, expected_jit_type=None
) -> Value:
"""Import an FX `Argument`, which must result to an MLIR `Value`."""
if isinstance(arg, torch_fx.Node):
# If implementing boxed support for multi-result nodes, then
# this will need to do something more intelligent.
if arg in self._multi_result_nodes:
raise RuntimeError(f"Attempt to de-reference a multi-result node")
# catch references to dynamically created constant attributes and make sure they have an origin in our module
if arg.op == "get_attr" and (arg.target, 0) not in self._v:
gm = arg.graph.owning_module
assert hasattr(
gm, arg.target
), f"Attempting to retrieve attribute '{arg.target}' from module, but no such attribute exists"
obj = getattr(gm, arg.target)
with loc:
self._v[(arg, 0)] = self._import_literal(obj)
return self._v[(arg, 0)]
elif isinstance(arg, torch_fx.immutable_collections.immutable_list):
return self._import_list_argument(loc, arg, expected_jit_type)
elif isinstance(expected_jit_type, torch.TensorType) and not isinstance(
arg, torch.Tensor
):
# promote scalars to tensor types as appropriate
return self._import_scalar_as_tensor(loc, arg)
else:
with loc:
return self._import_literal(arg)
def _import_literal(self, py_value: Any) -> Value:
# Apply the conversion callback.
user_callback = self._literal_resolver_callback
if user_callback:
user_value = user_callback(py_value, self)
if user_value is not None:
assert isinstance(user_value, Value)
return user_value
# Default conversion path.
converter = LITERAL_CONVERTER_MAP.lookup(type(py_value))
if converter is None:
raise TypeError(
f"Unsupported argument -> literal conversion for {py_value.__class__}"
)
return converter(py_value, self, self._cc)
def _import_scalar_as_tensor(self, loc: Location, arg: NodeArgument) -> Value:
tensor_arg = torch.tensor(arg)
result_type = self._cc.get_vtensor_type(tensor_arg.size(), tensor_arg.dtype)
with loc:
constant_arg = LITERAL_CONVERTER_MAP.lookup(type(arg))(arg, self, self._cc)
return Operation.create(
name="torch.prim.NumToTensor.Scalar",
results=[result_type],
operands=[constant_arg],
loc=loc,
).result
def _import_list_argument(
self, loc: Location, arg: NodeArgument, expected_jit_type
) -> Value:
assert (
isinstance(expected_jit_type, torch.ListType)
or (
isinstance(expected_jit_type, torch.OptionalType)
and isinstance(expected_jit_type.getElementType(), torch.ListType)
)
or isinstance(expected_jit_type, NoneType)
), f"Unexpected jit type as list argument: {arg} of type {expected_jit_type}"
# parse list type
if expected_jit_type is None:
element_type = type(arg[0])
else:
element_jit_type = expected_jit_type.getElementType()
# this branch is needed to handle Optional[List[]] types
if isinstance(element_jit_type, torch.ListType):
element_jit_type = element_jit_type.getElementType()
# this handles getting the inner types for List[Optional[]] types
is_optional_type = isinstance(element_jit_type, torch.OptionalType)
if is_optional_type:
element_jit_type = element_jit_type.getElementType()
element_type = TORCH_TYPE_TO_PY_TYPE[type(element_jit_type)]
# create list operands
list_operands = []
for operand in arg:
operand_type = type(operand)
if isinstance(operand, torch.fx.Node):
if operand in self._multi_result_nodes:
raise RuntimeError(f"Attempt to de-reference a multi-result node")
val = self._v[(operand, 0)]
val_type = str(val.type)
assert (
isinstance(element_type, str) and element_type in val_type
) or SCALAR_TYPE_TO_TORCH_MLIR_TYPE.get(
element_type
) == val_type, f"Heterogeneous lists are not supported: expected {element_type}, got {val_type}"
else:
assert (is_optional_type and operand_type is NoneType) or (
element_type == operand_type
), f"Heterogeneous lists are not supported: expected {element_type}, got {operand_type}"
operand_jit_type = (
torch.NoneType if operand_type is NoneType else element_jit_type
)
val = self._import_default_value(loc, operand, operand_jit_type)
list_operands.append(val)
# construct list op
if is_optional_type:
list_type = PY_TYPE_TO_TORCH_OPTIONAL_LIST_TYPE[element_type]
else:
list_type = PY_TYPE_TO_TORCH_LIST_TYPE[element_type]
result_type = IrType.parse(list_type, context=self._c)
operation = Operation.create(
"torch.prim.ListConstruct",
results=[result_type],
operands=list_operands,
loc=loc,
)
return operation.result
def _import_default_value(self, loc: Location, arg, expected_jit_type) -> Value:
"""Imports a defaulted value for a known function schema."""
if isinstance(arg, list):
return self._import_list_argument(loc, arg, expected_jit_type)
# The LITERAL_CONVERTER_MAP maps each arg to its respective constant
# of the expected jit IR type (types like torch.dtype will form a chain of
# maps to get to constant of expected_jit_type).
cvt = LITERAL_CONVERTER_MAP.lookup(type(arg))
if cvt is None:
raise RuntimeError(f"Unhandled default value ({arg.__class__}): {arg})")
with loc:
return cvt(arg, self, self._cc)
def _make_constant_op(
op_name: str, value_attr: Attribute, result_type: Optional[IrType] = None
) -> Operation:
return Operation.create(
op_name,
results=[result_type if result_type else value_attr.type],
attributes={"value": value_attr},
)
def create_mlir_tensor_type(tensor: torch.Tensor) -> IrType:
try:
dtype = tensor.dtype
element_type = TORCH_DTYPE_TO_MLIR_TYPE[dtype]()
tensor_type = RankedTensorType.get(tuple(tensor.size()), element_type)
return tensor_type
except KeyError:
raise TypeError(f"Could not map Torch dtype {dtype} to an MLIR type")
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
def _make_vtensor_literal_op(
tensor: torch.Tensor, vtensor_type: IrType, py_attr_tracker: "RefTracker"
) -> Operation:
mapping = py_attr_tracker.track(tensor)
if mapping.is_empty:
# Resolve the attribute.
npy_dtype = TORCH_DTYPE_TO_NPY_TYPE.get(tensor.dtype)
assert (
npy_dtype is not None
), f"Can not create literal tensor for unsupported datatype: {tensor.dtype}"
# We need a raw buffer of data in order to create an ElementsAttr for the invocation of torch.vtensor.literal,
# but torch.Tensor does not fulfill the python buffer/array interface hence we must convert to a numpy array to get
# a raw buffer of our data. We can't call torch.Tensor.numpy() directly because this internally forces a call to
# detach() which throws an error as we are operating in a FakeTensorMode, hence the simplest way to get this raw
# buffer is via the indirection: Tensor -> list -> numpy array. This allows us to create a vtensor literal as
# desired, but also limits which data types we can support in this function (see TORCH_DTYPE_TO_NPY_TYPE above)
np_tensor = np.array(tensor.tolist()).astype(npy_dtype)
# One element constants are more optimizable as splat DenseElementsAttr. DenseResourceElementsAttr does not
# support splats, so don't use it for that case. In addition, at the time of writing, it has bugs with handling
# 0d tensors.
if np_tensor.size == 1:
try:
dtype = tensor.dtype
element_type = TORCH_DTYPE_TO_MLIR_TYPE[dtype]()
except KeyError:
raise TypeError(f"Could not map Torch dtype {dtype} to an MLIR type")
elements_attr = DenseElementsAttr.get(
type=element_type, array=np_tensor, shape=np_tensor.shape
)
else:
bytes_view = memoryview(np_tensor)
tensor_type = create_mlir_tensor_type(tensor)
shape_desc = "_".join([str(d) for d in tensor.shape])
blob_name = f"torch_tensor_{shape_desc}_{str(tensor.dtype)}"
elements_attr = DenseResourceElementsAttr.get_from_buffer(
bytes_view,
blob_name,
tensor_type,
)
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
mapping.value = elements_attr
else:
elements_attr = mapping.value
return Operation.create(
name="torch.vtensor.literal",
results=[vtensor_type],
attributes={"value": elements_attr},
)
################################################################################
# TypeSubclassMapping
################################################################################
class TypeSubclassMap:
"""Mapping of super-types to values.
Maintains a cache of actual types seen and uses that instead of a linear
scan.
"""
__slots__ = [
"_cache",
"_mapping",
]
def __init__(self):
# The linear list of converters.
self._mapping: List[Tuple[type, Any]] = []
# When there is a hit on the linear mapping, memoize it here.
self._cache: Dict[type, Any] = {}
def map(self, t: type, value: Any):
self._mapping.append((t, value))
self._cache[t] = value
def lookup(self, t: type) -> Any:
try:
return self._cache[t]
except KeyError:
pass
for t_super, value in self._mapping:
if issubclass(t, t_super):
self._cache[t] = value
return value
else:
self._cache[t] = None
return None
###############################################################################
# Reference mapping
###############################################################################
# Opaque value to indicate something is empty. Used in cases where 'None'
# may have a different meaning.
class EmptyType:
...
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681) Changes made during upstreaming: * Removed comments attributing some copied code back to torch-mlir (since it is now repatriated). * Re-organized imports. * Inlined RefMapping/RefTracker and TypeSubclassMap from an external utility module. * Added FxImporter class comments. * Updated stack trace extraction to be fail safe. * Added an entry-point for `import_frozen_exported_program` which uses the shiny new upstream `torch.export.export()` API (versus the lower-level/older API that Turbine is presently using). This necessitated a small FX rewrite to line external state management up with current conventions. * Adapted one of Turbine's importer tests to go with this initial submission. Turbine unfortunately has a lot of more-integration-ey tests, and I would like to extract those as more of unit tests of the importer features and upstream them that way vs trying to copy directly. For now, one overall test with the initial submission gets us moving. I acknowledge that there are some code quality things that could be improved in this submission: this was authored over the course of many months (and often via some trial and error). I would like to keep it relatively converged with the downstream for the next few steps while getting the test suite upstreamed. And then it will be easier to take a hygienic pass through the code. Including co-authors for contributors in the git log of the original repository. Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com> Co-authored-by: Avinash Sharma <aviator1994@gmail.com> Co-authored-by: Arham Khan <arhammkhan@gmail.com> Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu> Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-22 00:40:10 +08:00
Empty = EmptyType()
class RefMapping:
__slots__ = [
"_referrent",
"value",
]
def __init__(self, referrent: Any):
if referrent is not Empty:
self._referrent = weakref.ref(referrent)
self.value = Empty
@property
def is_empty(self):
return self.value is Empty
def __repr__(self):
return (
f"<RefMapping {id(self._referrent) if self._referrent is not Empty else 'empty'} -> "
f"{self.value if self.value is not Empty else 'empty'}>"
)
class RefTracker:
"""Tracks live references from Python values to symbolic associations."""
def __init__(self):
self._refs: Dict[int, RefMapping] = {}
def track(self, referrent: Any) -> RefMapping:
ref_id = id(referrent)
existing = self._refs.get(ref_id)
if existing:
return existing
info = RefMapping(referrent)
if referrent is not Empty:
weakref.finalize(referrent, self._ref_finalizer, ref_id)
self._refs[ref_id] = info
return info
def _ref_finalizer(self, ref_id: int):
del self._refs[ref_id]
################################################################################
# Mappings
################################################################################
LITERAL_CONVERTER_MAP = TypeSubclassMap()
LITERAL_CONVERTER_MAP.map(
NoneType,
lambda arg, gni, cc: Operation.create(
"torch.constant.none", results=[cc.torch_none_type]
).result,
)
LITERAL_CONVERTER_MAP.map(
bool,
lambda arg, gni, cc: _make_constant_op(
"torch.constant.bool", cc.integer_attr(arg, 1), cc.torch_bool_type
).result,
)
LITERAL_CONVERTER_MAP.map(
int,
lambda arg, gni, cc: _make_constant_op(
"torch.constant.int", cc.integer_attr(arg, 64), cc.torch_int_type
).result,
)
LITERAL_CONVERTER_MAP.map(
float,
lambda arg, gni, cc: _make_constant_op(
"torch.constant.float", FloatAttr.get_f64(arg), cc.torch_float_type
).result,
)
LITERAL_CONVERTER_MAP.map(
str,
lambda arg, gni, cc: _make_constant_op(
"torch.constant.str", StringAttr.get(arg), cc.torch_str_type
).result,
)
LITERAL_CONVERTER_MAP.map(
torch.Tensor,
lambda arg, gni, cc: _make_vtensor_literal_op(
arg, cc.tensor_to_vtensor_type(arg), cc._py_attr_tracker
).result,
)
LITERAL_CONVERTER_MAP.map(
torch.device,
lambda arg, gni, cc: _make_constant_op(
"torch.constant.device", StringAttr.get(str(arg)), cc.torch_device_type
).result,
)
LITERAL_CONVERTER_MAP.map(
torch.dtype,
lambda arg, gni, cc: LITERAL_CONVERTER_MAP.lookup(int)(
TORCH_DTYPE_TO_INT[arg], gni, cc
),
)
LITERAL_CONVERTER_MAP.map(
torch.layout,
lambda arg, gni, cc: LITERAL_CONVERTER_MAP.lookup(int)(
TORCH_LAYOUT_TO_INT[arg], gni, cc
),
)
LITERAL_CONVERTER_MAP.map(
torch.memory_format,
lambda arg, gni, cc: LITERAL_CONVERTER_MAP.lookup(int)(
TORCH_MEMORY_FORMAT_TO_INT[arg], gni, cc
),
)
TORCH_TYPE_TO_PY_TYPE = {
torch.IntType: int,
torch.FloatType: float,
torch.StringType: str,
torch.BoolType: bool,
torch.TensorType: "vtensor",
}
PY_TYPE_TO_TORCH_LIST_TYPE = {
int: "!torch.list<int>",
float: "!torch.list<float>",
str: "!torch.list<str>",
bool: "!torch.list<bool>",
"tensor": "!torch.list<tensor>",
"vtensor": "!torch.list<vtensor>",
}
PY_TYPE_TO_TORCH_OPTIONAL_LIST_TYPE = {
int: "!torch.list<optional<int>>",
float: "!torch.list<optional<float>>",
str: "!torch.list<optional<str>>",
bool: "!torch.list<optional<bool>>",
"tensor": "!torch.list<optional<tensor>>",
"vtensor": "!torch.list<optional<vtensor>>",
}
SCALAR_TYPE_TO_TORCH_MLIR_TYPE = {
torch.SymInt: "!torch.int",
torch.SymFloat: "!torch.float",
torch.SymBool: "!torch.bool",
int: "!torch.int",
float: "!torch.float",
str: "!torch.str",
bool: "!torch.bool",
NoneType: "!torch.none",
}
# AOT-autograd sometimes falsely emit tensor version op with scalar arguments.
# We may remove this dictionary, if we fix such behavior in the backend.
TENSOR_SCALAR_OP_CONVERTER = {
"torch.aten.mul.Tensor": "torch.aten.mul.Scalar",
"torch.aten.div.Tensor": "torch.aten.div.Scalar",
"torch.aten.add.Tensor": "torch.aten.add.Scalar",
"torch.aten.sub.Tensor": "torch.aten.sub.Scalar",
"torch.aten.floor_divide": "torch.aten.floor_divide.Scalar",
}