torch-mlir/lib/Conversion/TorchToStablehlo/Basic.cpp

1864 lines
75 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"
#include "../PassDetail.h"
#include "PopulatePatterns.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "stablehlo/dialect/ChloOps.h"
#include "stablehlo/dialect/StablehloOps.h"
#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
#include "utils/hlo_utils.h"
#include <iostream>
#include <numeric>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::torch_to_stablehlo;
LogicalResult broadcastRanks(PatternRewriter &rewriter, Operation *op,
mlir::Value &self, mlir::Value &other,
size_t dimSizeIndexBits) {
auto selfTy = self.getType().template dyn_cast<RankedTensorType>();
auto otherTy = other.getType().template dyn_cast<RankedTensorType>();
auto selfRank = selfTy.getRank();
auto otherRank = otherTy.getRank();
if (selfRank == 0 || otherRank == 0)
return success();
if (selfRank > otherRank) {
auto unsqueezeDims =
llvm::to_vector<4>(llvm::seq<int64_t>(0, selfRank - otherRank));
auto unsqueezeInfo = hlo::unsqueezeTensor(rewriter, op, other,
unsqueezeDims, dimSizeIndexBits);
if (failed(unsqueezeInfo))
return failure();
other = *unsqueezeInfo;
} else if (otherRank > selfRank) {
auto unsqueezeDims =
llvm::to_vector<4>(llvm::seq<int64_t>(0, otherRank - selfRank));
auto unsqueezeInfo = hlo::unsqueezeTensor(rewriter, op, self, unsqueezeDims,
dimSizeIndexBits);
if (failed(unsqueezeInfo))
return failure();
self = *unsqueezeInfo;
}
return success();
}
bool skipMultiplyAlpha(Value alphaValue) {
double doubleValue;
auto isFloat = matchPattern(alphaValue, m_TorchConstantFloat(&doubleValue));
int64_t intValue;
auto isInt = matchPattern(alphaValue, m_TorchConstantInt(&intValue));
return ((isFloat && doubleValue == 1.0) || (isInt && intValue == 1.0));
}
static FailureOr<Value> getMaxValueOfDtype(Operation *op, Type elementType,
PatternRewriter &rewriter) {
auto constType = RankedTensorType::get({}, elementType);
if (elementType.isa<mlir::FloatType>()) {
auto constAttr = SplatElementsAttr::get(
constType,
APFloat::getInf(elementType.cast<mlir::FloatType>().getFloatSemantics(),
/*negative=*/false));
return rewriter
.create<stablehlo::ConstantOp>(op->getLoc(), constType, constAttr)
.getResult();
}
if (elementType.isa<mlir::IntegerType>()) {
auto integerType = elementType.cast<mlir::IntegerType>();
DenseElementsAttr constAttr;
if (integerType.isUnsigned()) {
constAttr = SplatElementsAttr::get(
constType, APInt::getMaxValue(integerType.getWidth()));
} else {
constAttr = SplatElementsAttr::get(
constType, APInt::getSignedMaxValue(integerType.getWidth()));
}
return rewriter
.create<stablehlo::ConstantOp>(op->getLoc(), constType, constAttr)
.getResult();
}
return failure();
}
static FailureOr<Value> getMinValueOfDtype(Operation *op, Type elementType,
PatternRewriter &rewriter) {
auto constType = RankedTensorType::get({}, elementType);
if (elementType.isa<mlir::FloatType>()) {
auto constAttr = SplatElementsAttr::get(
constType,
APFloat::getInf(elementType.cast<mlir::FloatType>().getFloatSemantics(),
/*negative=*/true));
return rewriter
.create<stablehlo::ConstantOp>(op->getLoc(), constType, constAttr)
.getResult();
}
if (elementType.isa<mlir::IntegerType>()) {
auto integerType = elementType.cast<mlir::IntegerType>();
DenseElementsAttr constAttr;
if (integerType.isUnsigned()) {
constAttr = SplatElementsAttr::get(
constType, APInt::getMinValue(integerType.getWidth()));
} else {
constAttr = SplatElementsAttr::get(
constType, APInt::getSignedMinValue(integerType.getWidth()));
}
return rewriter
.create<stablehlo::ConstantOp>(op->getLoc(), constType, constAttr)
.getResult();
}
return failure();
}
// These legalizations are for unary ops.
namespace {
template <typename AtenOpT, typename StablehloOpT>
class ConvertAtenUnaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.getSelf();
auto selfType = self.getType().cast<TensorType>();
if (!selfType) {
return op.emitError("only Tensor types supported in StableHLO");
}
auto outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
self = hlo::promoteType(rewriter, op.getLoc(), self, outType);
rewriter.replaceOpWithNewOp<StablehloOpT>(op, outType, self);
return success();
}
};
} // namespace
// These legalizations are for unary ops with only for floating point datatypes.
// There is no supported quantized integer mode for these.
namespace {
template <typename AtenOpT, typename StablehloOpT>
class ConvertAtenUnaryFPOnlyOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.getSelf();
auto selfTy = self.getType().cast<TensorType>();
if (!selfTy)
return op.emitError("only Tensor types supported in StableHLO");
if (selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<StablehloOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
self);
return success();
} else {
return op.emitError(
"only floating-point datatype legalization supported");
}
}
};
} // namespace
// aten.ones & aten.zeros
// Ref: Error checking based on the Torch to TOSA lowering
namespace {
template <typename AtenOpT, int fillVal>
class ConvertAtenConstPatternOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template dyn_cast<TensorType>();
if (!outType)
return op.emitError("only Tensor types supported in StableHLO");
Type outElemTy = outType.getElementType();
if (!outElemTy.isIntOrFloat())
return op.emitError(
"only floating-point or integer datatype legalization supported");
SmallVector<int64_t> shape;
if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(shape))) {
return op.emitError("shape must be a list of Scalar constants");
}
int64_t size = 1;
for (auto s : shape)
size *= s;
SmallVector<int32_t> values(size, fillVal);
auto constOp =
hlo::getConstTensor<int32_t>(rewriter, op, values, shape).value();
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(op, outType, constOp);
return success();
}
};
} // namespace
namespace {
// Casts a tensor of exactly one element to an elemental type.
// Many codes borrowed from
// `lib/Conversion/TorchToLinalg/TensorScalarInterop.cpp`
template <typename AtenOpT>
class ConvertAtenTensorToScalarLikeOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto inputType =
adaptor.getA().getType().template dyn_cast<RankedTensorType>();
if (!inputType)
op.emitError("only Tensor types supported in StableHLO");
Location loc = op.getLoc();
Value input = adaptor.getA();
SmallVector<Value> inputSizes = getTensorSizes(rewriter, loc, input);
int64_t inputRank = inputSizes.size();
Type inputDtype =
op.getA().getType().template cast<BaseTensorType>().getDtype();
Value constantOne =
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(1));
for (int64_t i = 0; i < inputRank; i++)
checkDimEqualHelper(rewriter, loc, inputSizes[i], constantOne);
Value constantZero =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
SmallVector<Value> indices(inputRank, constantZero);
Value result = rewriter.create<tensor::ExtractOp>(loc, input, indices);
Type resultType =
this->getTypeConverter()->convertType(op->getResult(0).getType());
rewriter.replaceOp(op, convertScalarToDtype(rewriter, loc, result,
resultType, inputDtype));
return success();
}
};
} // namespace
// The binary broadcast patterns
namespace {
template <typename AtenOpT, typename ChloOpT>
class ConvertAtenBinaryBroadcastOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getSelf();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.getOther();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("only Tensor types supported");
auto outTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outTy);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outTy);
rewriter.replaceOpWithNewOp<ChloOpT>(op, outTy, lhs, rhs,
/*broadcast_attr*/ nullptr);
return success();
}
};
} // namespace
// These binary op legalizations are specific to add/sub which have an
// alpha multiplier.
namespace {
template <typename AtenOpT, typename ChloOpT>
class ConvertAtenAddSubOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getSelf();
RankedTensorType lhsType = lhs.getType().dyn_cast<RankedTensorType>();
Value rhs = adaptor.getOther();
RankedTensorType rhsType = rhs.getType().dyn_cast<RankedTensorType>();
if (!lhsType)
return op.emitError("only Tensor types supported in StableHLO");
TensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
Type outElemTy = outType.getElementType();
if (!outElemTy.isIntOrFloat()) {
return op.emitError(
"only floating-point or integer datatype legalization supported");
}
if (!rhsType) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOther(),
outElemTy);
if (isa<AtenRsubScalarOp>(op)) {
std::swap(lhs, rhs);
}
}
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
if (!skipMultiplyAlpha(op.getAlpha())) {
Value alpha = hlo::scalarToStablehloTensor(rewriter, op,
adaptor.getAlpha(), outElemTy);
DenseIntElementsAttr bcastDimensions;
rhs = rewriter.create<chlo::BroadcastMulOp>(op->getLoc(), rhs, alpha,
bcastDimensions);
}
DenseIntElementsAttr bcastDimensions;
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
bcastDimensions);
return success();
}
};
} // namespace
// Binary op legalizations for Mul/Div variants.
namespace {
template <typename AtenOpT, typename ChloOpT>
class ConvertAtenMulDivOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getSelf();
auto lhsType = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.getOther();
TensorType rhsType = rhs.getType().dyn_cast<TensorType>();
if (!lhsType)
return op.emitError("only Tensor types supported in StableHLO");
auto outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
Type outElemTy = outType.getElementType();
if (!outElemTy.isIntOrFloat()) {
return op.emitError(
"only floating-point or integer datatype legalization supported");
}
if (std::is_same<AtenOpT, AtenSquareOp>()) {
rhs = lhs;
} else if (!rhsType) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOther(),
outElemTy);
}
DenseIntElementsAttr bcastDimensions;
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
auto loc = op.getLoc();
Value result =
rewriter.create<ChloOpT>(loc, outType, lhs, rhs, bcastDimensions);
if (!isa<AtenDivTensorModeOp>(op)) {
rewriter.replaceOp(op, result);
return success();
}
AtenDivTensorModeOp divTensorModeOp =
llvm::dyn_cast<AtenDivTensorModeOp>(op.getOperation());
std::string roundingMode;
if (!matchPattern(divTensorModeOp.getRoundingMode(),
m_TorchConstantStr(roundingMode)))
return rewriter.notifyMatchFailure(
op, "only support constant str rounding mode");
if (roundingMode == "trunc") {
// "trunc" - rounds the results of the division towards zero. Equivalent
// to C-style integer division.
auto sign = rewriter.create<stablehlo::SignOp>(loc, result);
auto abs = rewriter.create<stablehlo::AbsOp>(loc, result);
auto floor = rewriter.create<stablehlo::FloorOp>(loc, abs);
result = rewriter.create<stablehlo::MulOp>(loc, sign, floor).getResult();
}
if (roundingMode == "floor") {
// "floor" - rounds the results of the division down. Equivalent to
// floor division in Python (the // operator)
result = rewriter.create<stablehlo::FloorOp>(loc, result).getResult();
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// Binary op legalizations for comparator ops.
namespace {
template <typename AtenOpT>
class ConvertAtenCompareOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getSelf();
Value rhs = adaptor.getOther();
RankedTensorType lhsTy = lhs.getType().dyn_cast<RankedTensorType>();
RankedTensorType rhsTy = rhs.getType().dyn_cast<RankedTensorType>();
if (!lhsTy)
return op.emitError("only Tensor types supported in StableHLO");
RankedTensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<RankedTensorType>();
Type lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isIntOrFloat()) {
return op.emitError(
"only floating-point or integer datatype legalization supported");
}
if (!rhsTy) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOther(),
lhsElemTy);
}
// TODO: what is the PyTorch default type promotion?
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, lhsTy);
chlo::ComparisonTypeAttr compareTypeAttr;
chlo::ComparisonDirectionAttr compareDirectionAttr;
if (lhsElemTy.isa<mlir::FloatType>()) {
compareTypeAttr = chlo::ComparisonTypeAttr::get(
op->getContext(), chlo::ComparisonType::FLOAT);
} else if (lhsElemTy.isa<mlir::IntegerType>()) {
compareTypeAttr = chlo::ComparisonTypeAttr::get(
op->getContext(), chlo::ComparisonType::SIGNED);
}
if (std::is_same<AtenOpT, AtenLtTensorOp>() ||
std::is_same<AtenOpT, AtenLtScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::LT);
} else if (std::is_same<AtenOpT, AtenGtTensorOp>() ||
std::is_same<AtenOpT, AtenGtScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::GT);
} else if (std::is_same<AtenOpT, AtenGeTensorOp>() ||
std::is_same<AtenOpT, AtenGeScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::GE);
} else if (std::is_same<AtenOpT, AtenEqTensorOp>() ||
std::is_same<AtenOpT, AtenEqScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::EQ);
} else if (std::is_same<AtenOpT, AtenNeTensorOp>() ||
std::is_same<AtenOpT, AtenNeScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::NE);
} else if (std::is_same<AtenOpT, AtenLtTensorOp>() ||
std::is_same<AtenOpT, AtenLtScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::LT);
} else if (std::is_same<AtenOpT, AtenLeTensorOp>() ||
std::is_same<AtenOpT, AtenLeScalarOp>()) {
compareDirectionAttr = chlo::ComparisonDirectionAttr::get(
op->getContext(), chlo::ComparisonDirection::LE);
} else {
return op.emitError("operator haven't been supported");
}
DenseIntElementsAttr bcastDimensions;
rewriter.replaceOpWithNewOp<chlo::BroadcastCompareOp>(
op, outType, lhs, rhs, bcastDimensions, compareDirectionAttr,
compareTypeAttr);
return success();
}
};
} // namespace
// Binary op legalizations for Logical And/Or/Xor.
namespace {
template <typename AtenOpT, typename ChloOpT>
class ConvertAtenLogicalBinaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
TensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
Value lhs =
hlo::promoteType(rewriter, op.getLoc(), adaptor.getSelf(), outType);
Value rhs =
hlo::promoteType(rewriter, op.getLoc(), adaptor.getOther(), outType);
DenseIntElementsAttr bcastDimensions;
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
bcastDimensions);
return success();
}
};
} // namespace
// AtenTransposeIntOp
namespace {
class ConvertAtenTransposeIntOp
: public OpConversionPattern<AtenTransposeIntOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenTransposeIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.getSelf();
int64_t dim0;
if (!matchPattern(op.getDim0(), m_TorchConstantInt(&dim0))) {
return rewriter.notifyMatchFailure(op, "dim0 must be constant");
}
int64_t dim1;
if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1))) {
return rewriter.notifyMatchFailure(op, "dim1 must be constant");
}
auto inType = self.getType().cast<RankedTensorType>();
auto inputRank = inType.getRank();
auto outType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
dim0 = toPositiveDim(dim0, inputRank);
if (!isValidDim(dim0, inputRank)) {
return rewriter.notifyMatchFailure(op, "dim0 out of range");
}
dim1 = toPositiveDim(dim1, inputRank);
if (!isValidDim(dim1, inputRank)) {
return rewriter.notifyMatchFailure(op, "dim1 out of range");
}
SmallVector<int64_t> permValues(inputRank);
std::iota(std::begin(permValues), std::end(permValues), 0);
std::swap(permValues[dim0], permValues[dim1]);
DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(permValues.size())},
rewriter.getI64Type()),
permValues);
rewriter.replaceOpWithNewOp<stablehlo::TransposeOp>(op, outType, self,
permutation);
return success();
}
};
} // namespace
// AtenToDtypeOp
template <>
LogicalResult ConvertAtenOp<AtenToDtypeOp>::matchAndRewrite(
AtenToDtypeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
auto outType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
rewriter.replaceOpWithNewOp<stablehlo::ConvertOp>(op, outType, self);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenSizeIntOp>::matchAndRewrite(
AtenSizeIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Not a tensor type.
auto selfType = adaptor.getSelf().getType().dyn_cast<TensorType>();
if (!selfType)
return op.emitError("only tensor types are currently supported");
Value dim;
int64_t dimInt;
if (matchPattern(op.getDim(), m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, selfType.getRank());
if (!isValidDim(dimInt, selfType.getRank()))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
dim = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), dimInt);
} else {
Value inputRank = rewriter.create<arith::ConstantOp>(
op.getLoc(), rewriter.getI64IntegerAttr(selfType.getRank()));
dim = toPositiveDimDynamic(rewriter, op.getLoc(), adaptor.getDim(),
inputRank);
dim = rewriter.create<arith::IndexCastOp>(op.getLoc(),
rewriter.getIndexType(), dim);
}
auto dimSize = rewriter.create<tensor::DimOp>(
op.getLoc(), rewriter.getIndexType(), adaptor.getSelf(), dim);
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(
op, getTypeConverter()->convertType(op.getType()), dimSize);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenWhereSelfOp>::matchAndRewrite(
AtenWhereSelfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
Value cond = adaptor.getCondition();
Value other = adaptor.getOther();
auto outType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
// promote self and other types
self = hlo::promoteType(rewriter, op.getLoc(), self, outType);
other = hlo::promoteType(rewriter, op.getLoc(), other, outType);
if (failed(
broadcastRanks(rewriter, op, self, cond, options.dimSizeIndexBits)))
return op.emitError("failed broadcast self and condition ranks");
if (failed(
broadcastRanks(rewriter, op, other, cond, options.dimSizeIndexBits)))
return op.emitError("failed broadcast other and condition ranks");
rewriter.replaceOpWithNewOp<chlo::BroadcastSelectOp>(
op, getTypeConverter()->convertType(op.getType()),
ArrayRef<Value>{cond, self, other});
return success();
}
// AtenBroadcastToOp
template <>
LogicalResult ConvertAtenOp<AtenBroadcastToOp>::matchAndRewrite(
AtenBroadcastToOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
auto selfTy = self.getType().cast<RankedTensorType>();
auto outType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
if (options.enableStaticShape && selfTy.hasStaticShape()) {
Value bcastOp = hlo::promoteAndBroadcast(rewriter, self, outType);
rewriter.replaceOp(op, bcastOp);
return success();
}
SmallVector<Value> shape;
if (!(getListConstructElements(adaptor.getSize(), shape))) {
return op->emitError("desired shape must be a list of scalar");
}
SmallVector<Value> bcastShapeVec;
int64_t totalRank = shape.size();
int64_t selfRank = selfTy.getRank();
int64_t leadingRank = totalRank - selfRank;
for (int64_t i = 0; i < totalRank; ++i) {
Value dValue = shape[i];
Value newD;
int64_t dInt;
if (i >= leadingRank && matchPattern(dValue, m_TorchConstantInt(&dInt)) &&
dInt == -1) {
newD = rewriter.create<mlir::tensor::DimOp>(op->getLoc(), self,
i - leadingRank);
} else {
dValue = rewriter.create<torch::TorchConversion::ToI64Op>(op->getLoc(),
dValue);
newD = rewriter.create<mlir::arith::IndexCastOp>(
op->getLoc(), rewriter.getIndexType(), dValue);
}
bcastShapeVec.push_back(newD);
}
if (options.dimSizeIndexBits == 32) {
for (auto &dsize : bcastShapeVec) {
auto dsizeI64 = rewriter.create<mlir::arith::IndexCastOp>(
op->getLoc(), rewriter.getI64Type(), dsize);
dsize = rewriter.create<arith::TruncIOp>(op->getLoc(),
rewriter.getI32Type(), dsizeI64);
}
}
if (bcastShapeVec.size() == 0) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outType, self);
} else {
Value bcastShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
op->getLoc(), ValueRange{bcastShapeVec});
auto dimensionNumbers =
llvm::to_vector<4>(llvm::seq<int64_t>(leadingRank, totalRank));
rewriter.replaceOpWithNewOp<stablehlo::DynamicBroadcastInDimOp>(
op, outType, self, bcastShapeTensor,
rewriter.getI64TensorAttr(dimensionNumbers));
}
return success();
}
// AtenPermuteOp
template <>
LogicalResult ConvertAtenOp<AtenPermuteOp>::matchAndRewrite(
AtenPermuteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
// Not a ranked tensor type
auto inType = self.getType().dyn_cast<RankedTensorType>();
auto outType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
if (!inType)
return op.emitError("only ranked tensor types with static shapes are "
"currently supported");
SmallVector<int64_t> permValues;
if (!matchPattern(adaptor.getDims(), m_TorchListOfConstantInts(permValues)))
return rewriter.notifyMatchFailure(
op, "only constant dimensions are currently supported");
int64_t inRank = inType.getRank();
for (auto &d : permValues) {
d = toPositiveDim(d, inRank);
if (!isValidDim(d, inRank))
return op.emitError("not all dims are valid");
}
DenseIntElementsAttr permutation = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(permValues.size())},
rewriter.getI64Type()),
permValues);
rewriter.replaceOpWithNewOp<stablehlo::TransposeOp>(op, outType, self,
permutation);
return success();
}
// ValueTensorLiteralOp
template <>
LogicalResult ConvertAtenOp<ValueTensorLiteralOp>::matchAndRewrite(
ValueTensorLiteralOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
RankedTensorType resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
// Tensors with integer types need to be converted to signless integer
// element type. All tensors with element types other than integer can reuse
// existing elements attribute.
// TODO: what about unsigned integer?
if (auto elements = op.getValueAttr().dyn_cast<DenseIntElementsAttr>()) {
Type builtinTensorElemTy = resultType.getElementType();
unsigned bitWidth = builtinTensorElemTy.getIntOrFloatBitWidth();
DenseElementsAttr valueAttr =
elements.mapValues(builtinTensorElemTy, [&](const APInt &v) {
return APInt(bitWidth, v.getSExtValue());
});
rewriter.replaceOpWithNewOp<stablehlo::ConstantOp>(op, resultType,
valueAttr);
return success();
}
rewriter.replaceOpWithNewOp<stablehlo::ConstantOp>(op, resultType,
adaptor.getValue());
return success();
}
// AtenTensorIntOp
template <>
LogicalResult ConvertAtenOp<AtenTensorIntOp>::matchAndRewrite(
AtenTensorIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
RankedTensorType resultType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
Type outElementType = resultType.getElementType();
Value innerValue = adaptor.getT();
Value stablehloTensor =
hlo::scalarToStablehloTensor(rewriter, op, innerValue, outElementType);
rewriter.replaceOp(op, stablehloTensor);
return success();
}
// AtenReciprocalOp
// Reciprocal(x) = Div(1, x)
template <>
LogicalResult ConvertAtenOp<AtenReciprocalOp>::matchAndRewrite(
AtenReciprocalOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getSelf();
auto inputTy = input.getType().cast<RankedTensorType>();
auto outTy =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
if (!inputTy.getElementType().isa<mlir::FloatType>()) {
return op.emitError("only floating-point datatype legalization supported "
"for AtenReciprocalOp");
}
Value oneTensor = chlo::getConstantLike(rewriter, op->getLoc(), 1, input);
rewriter.replaceOpWithNewOp<stablehlo::DivOp>(op, outTy, oneTensor, input);
return success();
}
// AtenPowTensorScalarOp
template <>
LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
AtenPowTensorScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value lhs = adaptor.getSelf();
auto lhsType = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.getExponent();
TensorType rhsType = rhs.getType().dyn_cast<TensorType>();
if (!lhsType)
return op.emitError("only Tensor types supported in StableHLO");
auto outType = OpConversionPattern<AtenPowTensorScalarOp>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
Type outElemTy = outType.getElementType();
if (!outElemTy.isIntOrFloat()) {
return op.emitError(
"only floating-point or integer datatype legalization supported");
}
if (!rhsType) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy);
}
DenseIntElementsAttr bcastDimensions;
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
auto loc = op.getLoc();
Value result = rewriter.create<chlo::BroadcastPowOp>(loc, outType, lhs, rhs,
bcastDimensions);
rewriter.replaceOp(op, result);
return success();
}
// PrimNumToTensorScalarOp
template <>
LogicalResult ConvertAtenOp<PrimNumToTensorScalarOp>::matchAndRewrite(
PrimNumToTensorScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
RankedTensorType outputType = getTypeConverter()
->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
auto outputElemType = outputType.getElementType();
Value stablehloTensor = hlo::scalarToStablehloTensor(
rewriter, op, adaptor.getA(), outputElemType);
rewriter.replaceOp(op, stablehloTensor);
return success();
}
// AtenContiguousOp
// Ref: TosaToTosa.cpp for implementation details
template <>
LogicalResult ConvertAtenOp<AtenContiguousOp>::matchAndRewrite(
AtenContiguousOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Not a tensor type.
auto selfType = adaptor.getSelf().getType().dyn_cast<TensorType>();
if (!selfType)
return op.emitError("only tensor types are currently supported");
// FIXME: memory_format is not handled.
rewriter.replaceOp(op, adaptor.getSelf());
return success();
}
// AtenReluOp
// Relu(x) = Max(0, x)
template <>
LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
AtenReluOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value lhs = adaptor.getSelf();
auto lhsTy = lhs.getType().cast<RankedTensorType>();
auto lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isa<mlir::FloatType>()) {
return op->emitError("only float tensor in relu op is supported");
}
Value zeroTensor;
zeroTensor = chlo::getConstantLike(
rewriter, op->getLoc(),
APFloat::getZero(lhsElemTy.cast<mlir::FloatType>().getFloatSemantics(),
false),
lhs);
rewriter.replaceOpWithNewOp<stablehlo::MaxOp>(op, lhs, zeroTensor);
return success();
}
// Convert a Aten::GELU to HLO
// Gelu(x) = x * 1/2 * [1 + erf(x/(sqrt(2)))]
template <>
LogicalResult ConvertAtenOp<AtenGeluOp>::matchAndRewrite(
AtenGeluOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value input = adaptor.getSelf();
auto inputTy = input.getType().template dyn_cast<RankedTensorType>();
if (!inputTy) {
return op.emitError("only ranked tensor type is supported.");
}
Value one = chlo::getConstantLike(rewriter, loc, 1.0, input);
Value two = chlo::getConstantLike(rewriter, loc, 2.0, input);
Value half = chlo::getConstantLike(rewriter, loc, 0.5, input);
auto rsqrtTwo = rewriter.create<mlir::stablehlo::RsqrtOp>(loc, two);
auto erfElement = rewriter.create<stablehlo::MulOp>(loc, input, rsqrtTwo);
auto erf = rewriter.create<mlir::chlo::ErfOp>(loc, erfElement);
auto erfAdd = rewriter.create<stablehlo::AddOp>(loc, erf, one);
auto halfMul = rewriter.create<stablehlo::MulOp>(loc, erfAdd, half);
rewriter.replaceOpWithNewOp<stablehlo::MulOp>(op, input, halfMul);
return success();
}
// AtenErfOp
template <>
LogicalResult ConvertAtenOp<AtenErfOp>::matchAndRewrite(
AtenErfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getSelf();
auto inputType = input.getType().cast<TensorType>();
if (!inputType.getElementType().isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(op, "only float tensor is supported");
}
rewriter.replaceOpWithNewOp<chlo::ErfOp>(
op, getTypeConverter()->convertType(op.getType()), input);
return success();
}
// AtenBatchNormOp
template <>
LogicalResult ConvertAtenOp<AtenBatchNormOp>::matchAndRewrite(
AtenBatchNormOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getInput();
auto inputTy = input.getType().cast<RankedTensorType>();
Value weight = adaptor.getWeight();
Value bias = adaptor.getBias();
Value runningMean = adaptor.getRunningMean();
Value runningVar = adaptor.getRunningVar();
// momentum is ignored
Value momentum = adaptor.getMomentum();
(void)momentum;
// handle feature index, see torch's BatchNorm1d, BatchNorm2d, BatchNorm3d,
// all of NC, NCL, NCHW, NCDHW's feature index is 1.
int64_t feature_index = 1;
if (!inputTy.getElementType().template isa<mlir::FloatType>()) {
return op.emitError("only input tensor of float type is supported");
}
auto inputElemTy = inputTy.getElementType().cast<mlir::FloatType>();
Value channelDim =
rewriter.create<tensor::DimOp>(op->getLoc(), input, feature_index);
if (options.dimSizeIndexBits == 32) {
auto channelDimI64 = rewriter.create<mlir::arith::IndexCastOp>(
op->getLoc(), rewriter.getI64Type(), channelDim);
channelDim = rewriter.create<arith::TruncIOp>(
op->getLoc(), rewriter.getI32Type(), channelDimI64);
}
Value channelShape = rewriter.create<tensor::FromElementsOp>(
op->getLoc(), ValueRange{channelDim});
if (failed(checkNotNone(rewriter, op, weight))) {
weight = hlo::getConstantOfShape(
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 1),
channelShape,
RankedTensorType::get({inputTy.getShape()[1]},
inputTy.getElementType()));
}
if (failed(checkNotNone(rewriter, op, bias))) {
bias = hlo::getConstantOfShape(
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 0),
channelShape,
RankedTensorType::get({inputTy.getShape()[1]},
inputTy.getElementType()));
}
if (failed(checkNotNone(rewriter, op, runningVar))) {
runningVar = hlo::getConstantOfShape(
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 1),
channelShape,
RankedTensorType::get({inputTy.getShape()[1]},
inputTy.getElementType()));
}
if (failed(checkNotNone(rewriter, op, runningMean))) {
runningMean = hlo::getConstantOfShape(
rewriter, op->getLoc(), APFloat(inputElemTy.getFloatSemantics(), 0),
channelShape,
RankedTensorType::get({inputTy.getShape()[1]},
inputTy.getElementType()));
}
auto weightTy = weight.getType().cast<RankedTensorType>();
auto biasTy = bias.getType().cast<RankedTensorType>();
auto runningMeanTy = runningMean.getType().cast<RankedTensorType>();
auto runningVarTy = runningVar.getType().cast<RankedTensorType>();
if (weightTy.getRank() != 1 || biasTy.getRank() != 1 ||
runningMeanTy.getRank() != 1 || runningVarTy.getRank() != 1) {
return rewriter.notifyMatchFailure(
op, "expect weight, bias, running_mean and running_var to be rank 1");
}
if (!weightTy.getElementType().template isa<mlir::FloatType>() ||
!biasTy.getElementType().template isa<mlir::FloatType>() ||
!runningMeanTy.getElementType().template isa<mlir::FloatType>() ||
!runningVarTy.getElementType().template isa<mlir::FloatType>()) {
return op.emitError("only float weight/bias/runningMean/runningVar tensor "
"of float type is supported");
}
double eps = 0.0;
if (!matchPattern(op.getEps(), m_TorchConstantFloat(&eps))) {
return rewriter.notifyMatchFailure(op, "non-float(double) eps unsupported");
}
bool training = false;
if (!matchPattern(op.getTraining(), m_TorchConstantBool(&training))) {
return rewriter.notifyMatchFailure(op, "non-bool training unsupported");
}
// TODO: handle cudnnEnabled parameter. Here, we just ignore it!
bool cudnnEnabled = false;
if (!matchPattern(op.getCudnnEnabled(), m_TorchConstantBool(&cudnnEnabled))) {
return rewriter.notifyMatchFailure(op,
"non-bool cudnn_enabled unsupported");
}
if (training) {
Type outputTy = getTypeConverter()->convertType(op.getType());
Type batchMeanOrVarTy =
RankedTensorType::get(weightTy.getShape(), inputTy.getElementType());
Value output;
// supported mixed types, like input type is fp16 and weight type is fp32.
if (inputTy.getElementType() != weightTy.getElementType()) {
RankedTensorType convertedType = inputTy;
if (weightTy.getElementType().cast<FloatType>().getWidth() >
inputTy.getElementType().cast<FloatType>().getWidth()) {
convertedType = RankedTensorType::get(inputTy.getShape(),
weightTy.getElementType());
}
input = hlo::promoteType(rewriter, op.getLoc(), input, convertedType);
weight = hlo::promoteType(rewriter, op.getLoc(), weight, convertedType);
bias = hlo::promoteType(rewriter, op.getLoc(), bias, convertedType);
auto batchNormTrainingResult =
rewriter.create<stablehlo::BatchNormTrainingOp>(
op.getLoc(), outputTy, batchMeanOrVarTy, batchMeanOrVarTy, input,
weight, bias, rewriter.getF32FloatAttr(eps),
rewriter.getI64IntegerAttr(feature_index));
output = hlo::promoteType(rewriter, op.getLoc(),
batchNormTrainingResult.getResult(0),
outputTy.cast<TensorType>());
} else {
auto batchNormTrainingResult =
rewriter.create<stablehlo::BatchNormTrainingOp>(
op.getLoc(), outputTy, batchMeanOrVarTy, batchMeanOrVarTy, input,
weight, bias, rewriter.getF32FloatAttr(eps),
rewriter.getI64IntegerAttr(feature_index));
output = batchNormTrainingResult.getResult(0);
}
rewriter.replaceOp(op, output);
return success();
} else {
Type outputTy = getTypeConverter()->convertType(op.getType());
SmallVector<int64_t, 4> castShape{inputTy.getShape().begin(),
inputTy.getShape().end()};
castShape[1] = weightTy.getShape()[0];
auto castTy = RankedTensorType::get(castShape, inputTy.getElementType());
// Feature counts must match among operands of
// stablehlo::BatchNormInferenceOp.
Value inputCasted =
rewriter.create<tensor::CastOp>(op.getLoc(), castTy, input);
Value output;
// supported mixed types, like input type is fp16 and weight type is fp32.
if (inputTy.getElementType() != weightTy.getElementType()) {
RankedTensorType convertedType = inputTy;
if (weightTy.getElementType().cast<FloatType>().getWidth() >
inputTy.getElementType().cast<FloatType>().getWidth()) {
convertedType = RankedTensorType::get(inputTy.getShape(),
weightTy.getElementType());
}
input =
hlo::promoteType(rewriter, op.getLoc(), inputCasted, convertedType);
weight = hlo::promoteType(rewriter, op.getLoc(), weight, convertedType);
bias = hlo::promoteType(rewriter, op.getLoc(), bias, convertedType);
runningMean =
hlo::promoteType(rewriter, op.getLoc(), runningMean, convertedType);
runningVar =
hlo::promoteType(rewriter, op.getLoc(), runningVar, convertedType);
Value bnResult = rewriter.create<stablehlo::BatchNormInferenceOp>(
op.getLoc(), convertedType, input, weight, bias, runningMean,
runningVar, rewriter.getF32FloatAttr(eps),
rewriter.getI64IntegerAttr(feature_index));
output = hlo::promoteType(rewriter, op.getLoc(), bnResult,
outputTy.cast<TensorType>());
} else {
output = rewriter.create<stablehlo::BatchNormInferenceOp>(
op.getLoc(), inputCasted.getType(), inputCasted, weight, bias,
runningMean, runningVar,
// 'epsilon' must satisfy constraint: 32-bit float attribute.
rewriter.getF32FloatAttr(eps),
rewriter.getI64IntegerAttr(feature_index));
}
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputTy, output);
return success();
}
}
// AtenNativeLayerNormOp
template <>
LogicalResult ConvertAtenOp<AtenNativeLayerNormOp>::matchAndRewrite(
AtenNativeLayerNormOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getInput();
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputShape = inputTy.getShape();
auto inputRank = inputTy.getRank();
Value weight = adaptor.getWeight();
Value bias = adaptor.getBias();
if (!inputTy.hasStaticShape()) {
return op->emitError("dynamic shaped input is not supported");
}
SmallVector<int64_t> normalizedShape;
if (!matchPattern(op.getNormalizedShape(),
m_TorchListOfConstantInts(normalizedShape))) {
return rewriter.notifyMatchFailure(
op, "normalized_shape must be a list of const int");
}
double eps = 0;
if (!matchPattern(op.getEps(), m_TorchConstantFloat(&eps))) {
return rewriter.notifyMatchFailure(op,
"non const float eps is unsupported");
}
if (failed(checkNotNone(rewriter, op, weight)) ||
failed(checkNotNone(rewriter, op, bias))) {
return op->emitError("none weight or bias is unsupported");
}
auto weightTy = weight.getType().cast<RankedTensorType>();
auto biasTy = bias.getType().cast<RankedTensorType>();
if (!inputTy.getElementType().isa<mlir::FloatType>() ||
!biasTy.getElementType().isa<mlir::FloatType>() ||
!weightTy.getElementType().isa<mlir::FloatType>()) {
return op->emitError("currently only float data type are supported");
}
int64_t normalizedShapeRank = normalizedShape.size();
if (weightTy.getRank() != normalizedShapeRank ||
biasTy.getRank() != normalizedShapeRank ||
inputRank < normalizedShapeRank || normalizedShapeRank < 1) {
return rewriter.notifyMatchFailure(op, "input or weight or bias shape or"
"normalized shape not compatible");
}
for (int64_t i = 1; i <= normalizedShapeRank; i++) {
if (inputShape[inputRank - i] != normalizedShape[normalizedShapeRank - i] ||
weightTy.getShape()[normalizedShapeRank - i] !=
normalizedShape[normalizedShapeRank - i] ||
biasTy.getShape()[normalizedShapeRank - i] !=
normalizedShape[normalizedShapeRank - i]) {
return op.emitError("mismatching contracting dimension");
}
}
// Flatten dims to fit batch_norm operation.
int64_t numFeatureDimSize = 1;
int64_t numEmbeddingDimSize = 1;
for (int64_t i = 0; i < inputRank - normalizedShapeRank; i++) {
numFeatureDimSize *= inputShape[i];
}
for (int64_t i = 0; i < normalizedShapeRank; i++) {
numEmbeddingDimSize *= normalizedShape[i];
}
SmallVector<int64_t> inputFlattenShape{1, numFeatureDimSize,
numEmbeddingDimSize};
SmallVector<int64_t> meanOrVarStablehloOutShape{numFeatureDimSize};
auto stablehloBatchNormOutTy =
RankedTensorType::get(inputFlattenShape, inputTy.getElementType());
auto stablehloBathNormOutMeanOrVarTy = RankedTensorType::get(
meanOrVarStablehloOutShape, inputTy.getElementType());
// Reshape input
auto stablehloInput = rewriter.create<stablehlo::DynamicReshapeOp>(
op->getLoc(), stablehloBatchNormOutTy, input,
hlo::getConstTensor(rewriter, op, llvm::ArrayRef(inputFlattenShape),
{static_cast<int64_t>(inputFlattenShape.size())})
.value());
// Generate "scale" and "offset" Value for stablehlo.BatchNormTrainingOp.
SmallVector<APFloat> zeroConstVec(
numFeatureDimSize, APFloat::getZero(inputTy.getElementType()
.cast<mlir::FloatType>()
.getFloatSemantics()));
SmallVector<APFloat> oneConstVec(
numFeatureDimSize,
APFloat(
inputTy.getElementType().cast<mlir::FloatType>().getFloatSemantics(),
1));
auto oneOrZeroConstType =
RankedTensorType::get({numFeatureDimSize}, inputTy.getElementType());
Value scale = rewriter.create<stablehlo::ConstantOp>(
op->getLoc(), oneOrZeroConstType,
DenseElementsAttr::get(oneOrZeroConstType, oneConstVec));
Value offset = rewriter.create<stablehlo::ConstantOp>(
op->getLoc(), oneOrZeroConstType,
DenseElementsAttr::get(oneOrZeroConstType, zeroConstVec));
auto batchNormTrainingResult =
rewriter.create<stablehlo::BatchNormTrainingOp>(
op->getLoc(), stablehloBatchNormOutTy,
stablehloBathNormOutMeanOrVarTy, stablehloBathNormOutMeanOrVarTy,
stablehloInput, scale, offset, rewriter.getF32FloatAttr(eps),
rewriter.getI64IntegerAttr(1));
// Reshape back
auto outputTy =
getTypeConverter()->convertType(op.getType(0)).cast<RankedTensorType>();
auto outputMeanOrVarTy =
getTypeConverter()->convertType(op.getType(1)).cast<RankedTensorType>();
auto output = rewriter.create<stablehlo::DynamicReshapeOp>(
op->getLoc(), outputTy, batchNormTrainingResult.getResult(0),
hlo::getConstTensor(rewriter, op, outputTy.getShape(),
{static_cast<int64_t>(outputTy.getShape().size())})
.value());
auto mean = rewriter.create<stablehlo::DynamicReshapeOp>(
op->getLoc(), outputMeanOrVarTy, batchNormTrainingResult.getResult(1),
hlo::getConstTensor(
rewriter, op, outputMeanOrVarTy.getShape(),
{static_cast<int64_t>(outputMeanOrVarTy.getShape().size())})
.value());
auto var = rewriter.create<stablehlo::DynamicReshapeOp>(
op->getLoc(), outputMeanOrVarTy, batchNormTrainingResult.getResult(2),
hlo::getConstTensor(
rewriter, op, outputMeanOrVarTy.getShape(),
{static_cast<int64_t>(outputMeanOrVarTy.getShape().size())})
.value());
// Apply affine transform: output x weight + bias [element-wise]
auto bcastedWeight = hlo::promoteAndBroadcast(rewriter, weight, outputTy);
auto bcastedBias = hlo::promoteAndBroadcast(rewriter, bias, outputTy);
auto outputMulWeight =
rewriter.create<stablehlo::MulOp>(op->getLoc(), output, bcastedWeight);
auto finalOuput = rewriter.create<stablehlo::AddOp>(
op->getLoc(), outputMulWeight, bcastedBias);
rewriter.replaceOp(op, {finalOuput, mean, var});
return success();
}
// AtenCatOp
template <>
LogicalResult ConvertAtenOp<AtenCatOp>::matchAndRewrite(
AtenCatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto outType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
return rewriter.notifyMatchFailure(op,
"only constant dim param is supported");
}
dim = toPositiveDim(dim, outType.getRank());
if (!isValidDim(dim, outType.getRank()))
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
SmallVector<Value> torchTensors;
if (!getListConstructElements(op.getTensors(), torchTensors)) {
return rewriter.notifyMatchFailure(
op, "input should comes from a PrimListConstructOp");
}
SmallVector<Value> builtinTensors = getTypeConvertedValues(
rewriter, op->getLoc(), getTypeConverter(), torchTensors);
// Promote type
for (auto &v : builtinTensors) {
v = hlo::promoteType(rewriter, op->getLoc(), v, outType);
}
rewriter.replaceOpWithNewOp<stablehlo::ConcatenateOp>(
op, outType, ValueRange(builtinTensors), dim);
return success();
}
// AtenNumelOp
template <>
LogicalResult ConvertAtenOp<AtenNumelOp>::matchAndRewrite(
AtenNumelOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto self = adaptor.getSelf();
auto selfTy = self.getType().dyn_cast<RankedTensorType>();
size_t rank = selfTy.getRank();
Type intType = rewriter.getIntegerType(options.dimSizeIndexBits);
auto loc = op->getLoc();
Value numel = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));
for (size_t d = 0; d < rank; ++d) {
Value dimSize = rewriter.create<arith::IndexCastOp>(
loc, intType, rewriter.create<tensor::DimOp>(loc, self, d));
numel = rewriter.create<arith::MulIOp>(loc, numel, dimSize);
}
auto outTy = getTypeConverter()->convertType(op.getType());
if (outTy != numel.getType()) {
rewriter.replaceOpWithNewOp<arith::ExtSIOp>(op, outTy, numel);
} else {
rewriter.replaceOp(op, numel);
}
return success();
}
// AtenClampOp
template <>
LogicalResult ConvertAtenOp<AtenClampOp>::matchAndRewrite(
AtenClampOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getSelf();
auto inputType = input.getType().cast<RankedTensorType>();
auto inputElemType = inputType.getElementType();
Value minValue = adaptor.getMin();
Value maxValue = adaptor.getMax();
if (failed(checkNotNone(rewriter, op, minValue)) &&
failed(checkNotNone(rewriter, op, maxValue))) {
return rewriter.notifyMatchFailure(
op, "this op should be folded as its `min` and `max` both are none");
} else if (failed(checkNotNone(rewriter, op, minValue))) {
maxValue =
hlo::scalarToStablehloTensor(rewriter, op, maxValue, inputElemType);
auto minInfo = getMinValueOfDtype(op, inputElemType, rewriter);
if (failed(minInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to generate min value of dtype");
}
minValue = *minInfo;
} else if (failed(checkNotNone(rewriter, op, maxValue))) {
minValue =
hlo::scalarToStablehloTensor(rewriter, op, minValue, inputElemType);
auto maxInfo = getMaxValueOfDtype(op, inputElemType, rewriter);
if (failed(maxInfo)) {
return rewriter.notifyMatchFailure(
op, "failed to generate max value of dtype");
}
maxValue = *maxInfo;
} else {
minValue =
hlo::scalarToStablehloTensor(rewriter, op, minValue, inputElemType);
maxValue =
hlo::scalarToStablehloTensor(rewriter, op, maxValue, inputElemType);
}
rewriter.replaceOpWithNewOp<stablehlo::ClampOp>(op, minValue, input,
maxValue);
return success();
}
// AtenArangeStartStepOp
// aten.arange.start_step = range(ceil((end-start)/step)) * step + start.
template <>
LogicalResult ConvertAtenOp<AtenArangeStartStepOp>::matchAndRewrite(
AtenArangeStartStepOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
// Get element type of resultType as dtype
auto outType = this->getTypeConverter()
->convertType(op.getType())
.cast<RankedTensorType>();
auto dtype = outType.getElementType();
if (!dtype.isa<mlir::IntegerType>() && !dtype.isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: only int or float dtype supported");
}
Value start =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getStart(), dtype);
Value end =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getEnd(), dtype);
Value step =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getStep(), dtype);
// Get length of the 1-d output tensor
Value subOut = rewriter.create<stablehlo::SubtractOp>(loc, end, start);
Value divOut = rewriter.create<stablehlo::DivOp>(loc, subOut, step);
Value resultLength = rewriter.create<stablehlo::ReshapeOp>(
loc, RankedTensorType::get({1}, dtype), divOut);
if (dtype.isa<mlir::FloatType>()) {
resultLength = rewriter.create<stablehlo::CeilOp>(loc, resultLength);
resultLength = rewriter.create<stablehlo::ConvertOp>(
loc, RankedTensorType::get({1}, rewriter.getI64Type()), resultLength);
}
Value window =
rewriter.create<stablehlo::DynamicIotaOp>(loc, outType, resultLength, 0);
DenseIntElementsAttr broadcastDimensions;
Value mulOut = rewriter.create<chlo::BroadcastMulOp>(loc, window, step,
broadcastDimensions);
rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>(op, mulOut, start,
broadcastDimensions);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenGeluBackwardOp>::matchAndRewrite(
AtenGeluBackwardOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value input = adaptor.getSelf();
auto outType =
this->getTypeConverter()->convertType(op.getType()).cast<TensorType>();
if (!outType) {
return op.emitError("only tensor type is supported");
}
// TODO: Handle approximate.
std::string approximate;
if (!matchPattern(op.getApproximate(), m_TorchConstantStr(approximate)) ||
approximate != "none") {
return rewriter.notifyMatchFailure(op, "Unsupported value of approximate");
}
// Create constant value
Value kAlpha =
chlo::getConstantLike(rewriter, loc, 0.70710678118654752440, input);
Value cstAlpha0 =
chlo::getConstantLike(rewriter, loc, 1.12837916709551257390, input);
Value half = chlo::getConstantLike(rewriter, loc, .5, input);
Value one = chlo::getConstantLike(rewriter, loc, 1.0, input);
Value negHalf = chlo::getConstantLike(rewriter, loc, -0.5, input);
// Compute
Value kBeta0 =
rewriter.create<stablehlo::MulOp>(loc, outType, kAlpha, cstAlpha0);
Value kBeta = rewriter.create<stablehlo::MulOp>(loc, outType, kBeta0, half);
Value erfArg = rewriter.create<stablehlo::MulOp>(loc, outType, kAlpha,
adaptor.getSelf());
Value erf = rewriter.create<mlir::chlo::ErfOp>(loc, outType, erfArg);
Value erfAdd = rewriter.create<stablehlo::AddOp>(loc, outType, erf, one);
Value cdf = rewriter.create<stablehlo::MulOp>(loc, outType, erfAdd, half);
Value inputSquared = rewriter.create<stablehlo::MulOp>(
loc, outType, adaptor.getSelf(), adaptor.getSelf());
Value negHalfInputSquared =
rewriter.create<stablehlo::MulOp>(loc, outType, inputSquared, negHalf);
Value expRes =
rewriter.create<stablehlo::ExpOp>(loc, outType, negHalfInputSquared);
Value pdf = rewriter.create<stablehlo::MulOp>(loc, outType, kBeta, expRes);
Value pdfTimesInput =
rewriter.create<stablehlo::MulOp>(loc, outType, pdf, adaptor.getSelf());
Value pdfTimesInputAddCdf =
rewriter.create<stablehlo::AddOp>(loc, outType, pdfTimesInput, cdf);
rewriter.replaceOpWithNewOp<stablehlo::MulOp>(
op, outType, adaptor.getGradOutput(), pdfTimesInputAddCdf);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenPowTensorTensorOp>::matchAndRewrite(
AtenPowTensorTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value lhs = adaptor.getSelf();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.getExponent();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("only Tensor types supported");
auto outTy =
this->getTypeConverter()->convertType(op.getType()).cast<TensorType>();
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outTy);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outTy);
rewriter.replaceOpWithNewOp<chlo::BroadcastPowOp>(op, outTy, lhs, rhs,
/*broadcast_attr*/ nullptr);
return success();
}
template <>
LogicalResult ConvertAtenOp<AtenUniformOp>::matchAndRewrite(
AtenUniformOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
Value generator = adaptor.getGenerator();
Location loc = op.getLoc();
if (!generator.getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "The generator has to be None because only global default "
"generator is supported");
auto elements = self.getType().cast<RankedTensorType>().getShape();
if (llvm::any_of(elements,
[](int64_t dim) { return dim == ShapedType::kDynamic; }))
return rewriter.notifyMatchFailure(op, "Dynamic shape support TBD");
auto shape_tensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(elements));
auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = outTy.cast<RankedTensorType>().getElementType();
Value from =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getFrom(), outElemTy);
Value to =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getTo(), outElemTy);
rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, from, to, shape_tensor, stablehlo::RngDistribution::UNIFORM);
return success();
}
// Converts `aten.empty.memory_format` to `tensor.empty` op.
template <>
LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
AtenEmptyMemoryFormatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// TODO: Add support pin_memory and memory_format features.
// At this point all tensors should have value semantics, and hence the
// `layout` check can be ignored.
// The pin_memory should be either `False` or `none`.
bool pinMemory;
if (!op.getPinMemory().getType().template isa<Torch::NoneType>() &&
(!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)) ||
pinMemory))
return rewriter.notifyMatchFailure(
op, "unimplemented: pin_memory must be either None or false");
// Only `none`, `contiguous` and `preserve` memory_format is supported.
if (!op.getMemoryFormat().getType().isa<Torch::NoneType>()) {
int64_t memoryFormat;
if (!matchPattern(op.getMemoryFormat(), m_TorchConstantInt(&memoryFormat)))
return rewriter.notifyMatchFailure(
op, "unimplemented: the memory format should be specified in "
"an integer constant");
if (memoryFormat != torch_upstream::MemoryFormat::Contiguous &&
memoryFormat != torch_upstream::MemoryFormat::Preserve)
return rewriter.notifyMatchFailure(
op, "unimplemented: only none, contiguous and preserve "
"memory_format is supported");
}
if (!op.getDevice().getType().isa<Torch::NoneType>()) {
std::string device;
if (!matchPattern(op.getDevice(), m_TorchConstantDevice(device)))
return rewriter.notifyMatchFailure(
op, "unimplemented: device must be a constant str");
}
// TODO: Add support for non-strided layout.
// torch.layout is by default strided i.e. 0.
if (!op.getLayout().getType().isa<Torch::NoneType>()) {
int64_t tensorLayout;
if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout)))
return rewriter.notifyMatchFailure(
op, "unimplemented: layout must be a constant");
else if (tensorLayout != torch_upstream::Layout::Strided)
return rewriter.notifyMatchFailure(
op, "unimplemented: layout is expected to be strided");
}
Location loc = op.getLoc();
const TypeConverter *typeConverter = this->getTypeConverter();
SmallVector<Value> resultSizeTorchInt, resultSize, resultSizeIndex;
if (!getListConstructElements(op.getSize(), resultSizeTorchInt)) {
return rewriter.notifyMatchFailure(
op, "unimplemented: size must be constructed using ListConstruct");
}
resultSize =
getTypeConvertedValues(rewriter, loc, typeConverter, resultSizeTorchInt);
for (auto size : resultSize)
resultSizeIndex.push_back(castIntToIndex(rewriter, loc, size));
auto resultType =
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
Type resultElementType;
if (op.getDtype().getType().isa<Torch::NoneType>()) {
resultElementType = resultType.getElementType();
} else {
int64_t dtypeInt;
if (!matchPattern(op.getDtype(), m_TorchConstantInt(&dtypeInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
}
resultElementType = *maybeResultElementType;
}
// Create an uninitialized tensor of `resultSize` shape.
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(resultSizeIndex), resultElementType);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, initTensor);
return success();
}
// RuntimeAssertOp
namespace {
class ConvertRuntimeAssertOp : public OpConversionPattern<RuntimeAssertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeAssertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
bool condition;
if (!matchPattern(op.getCondition(), m_TorchConstantBool(&condition))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: condition must be a constant");
}
if (!condition) {
return op->emitError("condition must be true");
}
rewriter.eraseOp(op);
return success();
}
};
} // namespace
// AtenFillScalarOp
template <>
LogicalResult ConvertAtenOp<AtenFillScalarOp>::matchAndRewrite(
AtenFillScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto outType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
auto dtype = outType.getElementType();
Value scalarTensor =
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getValue(), dtype);
Value shapeTensor =
rewriter.create<shape::ShapeOfOp>(op->getLoc(), adaptor.getSelf());
Value bcastScalar = rewriter.create<stablehlo::DynamicBroadcastInDimOp>(
op->getLoc(), outType, scalarTensor, shapeTensor,
rewriter.getI64TensorAttr({}));
rewriter.replaceOp(op, bcastScalar);
return success();
}
// AtenFlipOp
template <>
LogicalResult ConvertAtenOp<AtenFlipOp>::matchAndRewrite(
AtenFlipOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
auto outType =
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
SmallVector<int64_t> dims;
if (!matchPattern(op.getDims(), m_TorchListOfConstantInts(dims))) {
return rewriter.notifyMatchFailure(op, "dims must be a list of const int");
}
for (unsigned i = 0, e = dims.size(); i < e; i++) {
dims[i] = toPositiveDim(dims[i], outType.getRank());
if (!isValidDim(dims[i], outType.getRank())) {
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
}
}
rewriter.replaceOpWithNewOp<stablehlo::ReverseOp>(
op, outType, self, rewriter.getI64TensorAttr(dims));
return success();
}
void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenTransposeIntOp>();
patterns.add<ConvertAtenTransposeIntOp>(typeConverter, context);
target.addIllegalOp<RuntimeAssertOp>();
patterns.add<ConvertRuntimeAssertOp>(typeConverter, context);
#define INSERT_UNARY_PATTERN(AtenOp, StablehloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryOp<AtenOp, StablehloOp>>(typeConverter, context)
INSERT_UNARY_PATTERN(AtenCloneOp, stablehlo::ConvertOp);
INSERT_UNARY_PATTERN(AtenNegOp, stablehlo::NegOp);
INSERT_UNARY_PATTERN(AtenLogicalNotOp, stablehlo::NotOp);
INSERT_UNARY_PATTERN(AtenBitwiseNotOp, stablehlo::NotOp);
INSERT_UNARY_PATTERN(AtenAbsOp, stablehlo::AbsOp);
#undef INSERT_UNARY_PATTERN
#define INSERT_UNARY_FPONLY_PATTERN(AtenOp, StablehloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryFPOnlyOp<AtenOp, StablehloOp>>(typeConverter, \
context)
INSERT_UNARY_FPONLY_PATTERN(AtenLogOp, stablehlo::LogOp);
INSERT_UNARY_FPONLY_PATTERN(AtenExpOp, stablehlo::ExpOp);
INSERT_UNARY_FPONLY_PATTERN(AtenSqrtOp, stablehlo::SqrtOp);
INSERT_UNARY_FPONLY_PATTERN(AtenRsqrtOp, stablehlo::RsqrtOp);
INSERT_UNARY_FPONLY_PATTERN(AtenSigmoidOp, stablehlo::LogisticOp);
INSERT_UNARY_FPONLY_PATTERN(AtenTanhOp, stablehlo::TanhOp);
INSERT_UNARY_FPONLY_PATTERN(AtenSinOp, stablehlo::SineOp);
INSERT_UNARY_FPONLY_PATTERN(AtenCosOp, stablehlo::CosineOp);
INSERT_UNARY_FPONLY_PATTERN(AtenCeilOp, stablehlo::CeilOp);
INSERT_UNARY_FPONLY_PATTERN(AtenFloorOp, stablehlo::FloorOp);
#undef INSERT_UNARY_FPONLY_PATTERN
#define INSERT_CONSTANT_FILL_PATTERN(AtenOp, fillVal) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenConstPatternOp<AtenOp, fillVal>>(typeConverter, \
context)
INSERT_CONSTANT_FILL_PATTERN(AtenOnesOp, 1);
INSERT_CONSTANT_FILL_PATTERN(AtenZerosOp, 0);
#undef INSERT_CONSTANT_FILL_PATTERN
#define INSERT_TENSOR_TO_SCALAR_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenTensorToScalarLikeOp<AtenOp>>(typeConverter, \
context)
INSERT_TENSOR_TO_SCALAR_PATTERN(AtenIntTensorOp);
INSERT_TENSOR_TO_SCALAR_PATTERN(AtenFloatTensorOp);
INSERT_TENSOR_TO_SCALAR_PATTERN(AtenBoolTensorOp);
#undef INSERT_TENSOR_TO_SCALAR_PATTERN
#define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, ChloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAddSubOp<AtenOp, ChloOp>>(typeConverter, context)
INSERT_BINARY_ADDSUB_PATTERN(AtenAddTensorOp, chlo::BroadcastAddOp);
INSERT_BINARY_ADDSUB_PATTERN(AtenAddScalarOp, chlo::BroadcastAddOp);
INSERT_BINARY_ADDSUB_PATTERN(AtenSubTensorOp, chlo::BroadcastSubOp);
INSERT_BINARY_ADDSUB_PATTERN(AtenSubScalarOp, chlo::BroadcastSubOp);
INSERT_BINARY_ADDSUB_PATTERN(AtenRsubScalarOp, chlo::BroadcastSubOp);
#undef INSERT_BINARY_ADDSUB_PATTERN
#define INSERT_BINARY_MULDIV_PATTERN(AtenOp, ChloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMulDivOp<AtenOp, ChloOp>>(typeConverter, context)
INSERT_BINARY_MULDIV_PATTERN(AtenMulTensorOp, chlo::BroadcastMulOp);
INSERT_BINARY_MULDIV_PATTERN(AtenMulScalarOp, chlo::BroadcastMulOp);
INSERT_BINARY_MULDIV_PATTERN(AtenDivTensorOp, chlo::BroadcastDivOp);
INSERT_BINARY_MULDIV_PATTERN(AtenDivTensorModeOp, chlo::BroadcastDivOp);
INSERT_BINARY_MULDIV_PATTERN(AtenDivScalarOp, chlo::BroadcastDivOp);
INSERT_BINARY_MULDIV_PATTERN(AtenRemainderScalarOp, chlo::BroadcastRemOp);
#undef INSERT_BINARY_MULDIV_PATTERN
#define INSERT_BINARY_COMPARE_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenCompareOp<AtenOp>>(typeConverter, context)
INSERT_BINARY_COMPARE_PATTERN(AtenGtTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenGtScalarOp);
INSERT_BINARY_COMPARE_PATTERN(AtenGeTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenGeScalarOp);
INSERT_BINARY_COMPARE_PATTERN(AtenLtTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenLtScalarOp);
INSERT_BINARY_COMPARE_PATTERN(AtenLeTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenLeScalarOp);
INSERT_BINARY_COMPARE_PATTERN(AtenEqTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenEqScalarOp);
INSERT_BINARY_COMPARE_PATTERN(AtenNeTensorOp);
INSERT_BINARY_COMPARE_PATTERN(AtenNeScalarOp);
#undef INSERT_BINARY_COMPARE_PATTERN
#define INSERT_BINARY_LOGICAL_PATTERN(AtenOp, ChloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenLogicalBinaryOp<AtenOp, ChloOp>>(typeConverter, \
context)
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalOrOp, chlo::BroadcastOrOp);
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalAndOp, chlo::BroadcastAndOp);
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalXorOp, chlo::BroadcastXorOp);
#undef INSERT_BINARY_LOGICAL_PATTERN
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
INSERT_ATENOP_PATTERN(AtenBroadcastToOp);
INSERT_ATENOP_PATTERN(AtenPermuteOp);
INSERT_ATENOP_PATTERN(ValueTensorLiteralOp);
INSERT_ATENOP_PATTERN(AtenTensorIntOp);
INSERT_ATENOP_PATTERN(AtenReciprocalOp);
INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp);
INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp);
INSERT_ATENOP_PATTERN(AtenContiguousOp);
INSERT_ATENOP_PATTERN(AtenReluOp);
INSERT_ATENOP_PATTERN(AtenGeluOp);
INSERT_ATENOP_PATTERN(AtenErfOp);
INSERT_ATENOP_PATTERN(AtenGeluBackwardOp);
INSERT_ATENOP_PATTERN(AtenCatOp);
INSERT_ATENOP_PATTERN(AtenClampOp);
INSERT_ATENOP_PATTERN(AtenArangeStartStepOp);
INSERT_ATENOP_PATTERN(AtenBatchNormOp);
INSERT_ATENOP_PATTERN(AtenNativeLayerNormOp);
INSERT_ATENOP_PATTERN(AtenNumelOp);
INSERT_ATENOP_PATTERN(AtenSizeIntOp);
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
INSERT_ATENOP_PATTERN(AtenPowTensorTensorOp);
INSERT_ATENOP_PATTERN(AtenUniformOp);
INSERT_ATENOP_PATTERN(AtenEmptyMemoryFormatOp);
INSERT_ATENOP_PATTERN(AtenFillScalarOp);
INSERT_ATENOP_PATTERN(AtenFlipOp);
#undef INSERT_ATENOP_PATTERN
#define INSERT_BINARY_BROADCAST_PATTERN(AtenOp, StablehloOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenBinaryBroadcastOp<AtenOp, StablehloOp>>( \
typeConverter, context)
INSERT_BINARY_BROADCAST_PATTERN(AtenMaximumOp, chlo::BroadcastMaxOp);
INSERT_BINARY_BROADCAST_PATTERN(AtenMinimumOp, chlo::BroadcastMinOp);
INSERT_BINARY_BROADCAST_PATTERN(Aten__And__TensorOp, chlo::BroadcastAndOp);
INSERT_BINARY_BROADCAST_PATTERN(AtenBitwiseAndTensorOp, chlo::BroadcastAndOp);
INSERT_BINARY_BROADCAST_PATTERN(AtenBitwiseOrTensorOp, chlo::BroadcastOrOp);
INSERT_BINARY_BROADCAST_PATTERN(AtenBitwiseXorTensorOp, chlo::BroadcastXorOp);
#undef INSERT_BINARY_BROADCAST_PATTERN
}