mirror of https://github.com/llvm/torch-mlir
22 lines
660 B
Python
22 lines
660 B
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
|
||
|
import numpy as np
|
||
|
import npcomp as npc
|
||
|
from npcomp.types import *
|
||
|
|
||
|
weights = np.random.uniform(size=(16, 4)).astype(np.float32)
|
||
|
bias = np.random.uniform(size=(4,)).astype(np.float32)
|
||
|
|
||
|
def constants(a: np.ndarray) -> np.ndarray:
|
||
|
return np.dot(a, weights) + bias
|
||
|
|
||
|
# TODO: Implement subclassing and deriving constraints by run
|
||
|
exp = npc.Exporter()
|
||
|
exp.constants = constants
|
||
|
|
||
|
mb = npc.tracing.ModuleBuilder()
|
||
|
mb.trace(exp.constants)
|
||
|
print(mb.module.to_asm())
|