mirror of https://github.com/llvm/torch-mlir
28 lines
1.4 KiB
MLIR
28 lines
1.4 KiB
MLIR
|
// RUN: npcomp-opt -split-input-file %s -canonicalize | FileCheck --dump-input=fail %s
|
||
|
|
||
|
// CHECK-LABEL: func @elideCreateRedundantArrayFromTensor
|
||
|
func @elideCreateRedundantArrayFromTensor() -> tensor<2xf64> {
|
||
|
// CHECK: %[[CST:.*]] = constant
|
||
|
// CHECK-NOT: numpy.create_array_from_tensor
|
||
|
// CHECK-NOT: numpy.copy_to_tensor
|
||
|
%cst = constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf64>
|
||
|
%0 = numpy.create_array_from_tensor %cst : (tensor<2xf64>) -> !numpy.ndarray<[2]:f64>
|
||
|
%1 = numpy.copy_to_tensor %0 : (!numpy.ndarray<[2]:f64>) -> tensor<2xf64>
|
||
|
// CHECK: return %[[CST]]
|
||
|
return %1 : tensor<2xf64>
|
||
|
}
|
||
|
|
||
|
// This test verifies that the very trivial elision is not overly aggressive.
|
||
|
// Note that in this example, it is still safe to remove the copy, but the
|
||
|
// analysis has not yet been written to do that safely.
|
||
|
// CHECK-LABEL: func @elideCreateRedundantArrayFromTensorNonTrivial
|
||
|
func @elideCreateRedundantArrayFromTensorNonTrivial() -> (tensor<2xf64>, tensor<2xf64>) {
|
||
|
// CHECK: numpy.create_array_from_tensor
|
||
|
// CHECK: numpy.copy_to_tensor
|
||
|
%cst = constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf64>
|
||
|
%0 = numpy.create_array_from_tensor %cst : (tensor<2xf64>) -> !numpy.ndarray<[2]:f64>
|
||
|
%1 = numpy.copy_to_tensor %0 : (!numpy.ndarray<[2]:f64>) -> tensor<2xf64>
|
||
|
%2 = numpy.copy_to_tensor %0 : (!numpy.ndarray<[2]:f64>) -> tensor<2xf64>
|
||
|
return %1, %2 : tensor<2xf64>, tensor<2xf64>
|
||
|
}
|