torch-mlir/lib/RefBackend/RefBackend.cpp

487 lines
18 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
//
// The torch-mlir "reference backend" requires a few passes to glue things
// together so that the final IR will work with ExecutionEngine.
//
// There is no actual "backend".
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/MLProgram/IR/MLProgram.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Approximation.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
#include "torch-mlir/RefBackend/Passes.h"
#include <numeric>
#include <set>
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::RefBackend;
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace {
#define GEN_PASS_REGISTRATION
#include "torch-mlir/RefBackend/Passes.h.inc"
} // end namespace
void mlir::torch::RefBackend::registerRefBackendPasses() { ::registerPasses(); }
//===----------------------------------------------------------------------===//
// MungeCallingConventions
//===----------------------------------------------------------------------===//
static bool isArgMemRefTypeValid(Type type) {
if (auto memRefType = dyn_cast<MemRefType>(type)) {
Type elemTy = memRefType.getElementType();
if (elemTy.isa<Float16Type, Float32Type, Float64Type>()) {
return true;
} else if (auto integerTy = dyn_cast<IntegerType>(elemTy)) {
if (integerTy.isSignlessInteger(64))
return true;
if (integerTy.isSignlessInteger(32))
return true;
if (integerTy.isSignlessInteger(8))
return true;
if (integerTy.isSignedInteger(8))
return true;
if (integerTy.isSignlessInteger(1))
return true;
} else if (auto complexTy = dyn_cast<ComplexType>(elemTy)) {
return complexTy.getElementType().isa<Float32Type, Float64Type>();
}
}
return false;
}
static void addEmitCInterfaceAttr(func::FuncOp func) {
func->setAttr("llvm.emit_c_interface", UnitAttr::get(func.getContext()));
}
static Type getAbiTypeForMemRef(Type type) {
return UnrankedMemRefType::get(cast<MemRefType>(type).getElementType(), 0);
}
// Helper function to get the type string for one return value like i32, f64,
// mri32 etc. The strings from multiple return values are concatenated to get
// the consumeFuncReturnFunc name.
static std::string getTypeToken(Type type) {
if (type.isSignlessInteger())
return ("i" + Twine(type.getIntOrFloatBitWidth())).str();
else if (isa<mlir::FloatType>(type))
return ("f" + Twine(type.getIntOrFloatBitWidth())).str();
else if (auto complexTy = dyn_cast<mlir::ComplexType>(type))
return ("c" + Twine(complexTy.getElementType().getIntOrFloatBitWidth()))
.str();
else if (auto memRefType = dyn_cast<UnrankedMemRefType>(type))
return "mr" + getTypeToken(memRefType.getElementType());
llvm_unreachable(
"Type token should handle all types: memref, float and int type");
}
// Systematically derive the consumeFuncReturnFunc name from return value types.
static std::string getConsumeReturnFunctionNameForReturnTypes(TypeRange types) {
SmallVector<std::string> tokens = {"refbackend_consume_func_return"};
for (auto type : types)
tokens.push_back(getTypeToken(type));
return std::accumulate(tokens.begin(), tokens.end(), std::string(),
[](std::string &a, std::string &b) {
return a.empty() ? b : (a + "_" + b);
});
}
// Replace the original returnOp with a call to consumeFuncReturnFunc and add
// the op to the `toErase` vector.
static void replaceReturnWithCall(OpBuilder b, func::ReturnOp op,
StringRef funcName, TypeRange retTypes,
SmallVectorImpl<Value> &vals,
SmallVectorImpl<Operation *> &toErase) {
b.create<mlir::func::CallOp>(op.getLoc(), funcName, TypeRange({}), vals);
b.create<mlir::func::ReturnOp>(op.getLoc());
toErase.push_back(op);
}
2021-10-05 10:06:59 +08:00
static LogicalResult mungeFunction(
func::FuncOp func,
std::map<std::string, std::vector<Type>> &invokedConsumeFuncReturnFuncs) {
// Only need to call mungeFunction for functions callable from outside of the
// module.
if (func.isPrivate())
return success();
// Add `llvm.emit_c_interface`.
// This allows ExecutionEngine to resolve the symbol properly.
addEmitCInterfaceAttr(func);
// Rewrite the function as follows:
// - replace all memref arguments with unranked memref
// - replace all returns with a call to a function, which is going to be
// supplied by the code setting up the ExecutionEngine to process the
// result. Additionally, ensure that all results are passed as unranked
// memrefs.
// - replace the function signature accordingly (unranked inputs, no returns).
OpBuilder b(func.getBody());
SmallVector<Type> newArgTypes;
for (auto arg : func.getArguments()) {
auto type = arg.getType();
if (!isArgMemRefTypeValid(type)) {
return emitError(arg.getLoc())
.append("argument must be a memref of f32, f64, i32, i64, i8, i1, "
"c32, c64, but "
"got ",
type);
}
auto cast = b.create<memref::CastOp>(arg.getLoc(), type, arg);
arg.replaceAllUsesExcept(cast, cast);
arg.setType(getAbiTypeForMemRef(type));
newArgTypes.push_back(arg.getType());
}
SmallVector<Operation *> toErase;
func.walk([&](func::ReturnOp op) {
auto types = op.getOperandTypes();
b.setInsertionPoint(op);
// Memref Types.
std::vector<Type> retTypes;
SmallVector<Value> retVals;
for (auto en : llvm::enumerate(types)) {
Type retType = en.value();
Value retVal = op.getOperand(en.index());
if (auto memrefReturnType = dyn_cast<MemRefType>(retType)) {
auto elemType = memrefReturnType.getElementType();
retType = UnrankedMemRefType::get(elemType, 0);
// Cast to unranked memref type before sending it as a function
// argument.
retVal = b.create<memref::CastOp>(
op.getLoc(), getAbiTypeForMemRef(types[en.index()]), retVal);
}
retTypes.push_back(retType);
retVals.push_back(retVal);
}
std::string funcName = getConsumeReturnFunctionNameForReturnTypes(retTypes);
auto invokedFuncsEnd = invokedConsumeFuncReturnFuncs.end();
if (invokedConsumeFuncReturnFuncs.find(funcName) == invokedFuncsEnd)
invokedConsumeFuncReturnFuncs.insert({funcName, retTypes});
replaceReturnWithCall(b, op, funcName, retTypes, retVals, toErase);
});
func.setType(FunctionType::get(func.getContext(), newArgTypes, {}));
for (Operation *op : toErase)
op->erase();
return success();
}
namespace {
class MungeCallingConventions
: public MungeCallingConventionsBase<MungeCallingConventions> {
void runOnOperation() override {
auto module = getOperation();
OpBuilder b(module.getBodyRegion());
std::map<std::string, std::vector<Type>> invokedConsumeFuncReturnFuncs;
for (auto func : module.getOps<func::FuncOp>()) {
if (failed(mungeFunction(func, invokedConsumeFuncReturnFuncs)))
return signalPassFailure();
}
// Create FuncOp for consumeFuncReturnFuncs that are used.
for (auto &p : invokedConsumeFuncReturnFuncs) {
auto consumeFuncReturnFunc = b.create<func::FuncOp>(
module.getLoc(), p.first,
FunctionType::get(module.getContext(), p.second, {}));
consumeFuncReturnFunc.setPrivate();
addEmitCInterfaceAttr(consumeFuncReturnFunc);
}
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::torch::RefBackend::createMungeCallingConventionsPass() {
return std::make_unique<MungeCallingConventions>();
}
//===----------------------------------------------------------------------===//
// MLProgramBufferize
//===----------------------------------------------------------------------===//
static LogicalResult bufferizeMLProgramGlobalOp(ml_program::GlobalOp globalOp,
OpBuilder &b) {
if (!globalOp.getValue().has_value())
return globalOp.emitError("global op must have a value");
RankedTensorType tensorType = cast<RankedTensorType>(globalOp.getType());
MemRefType memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
b.setInsertionPointToStart(globalOp->getParentOfType<ModuleOp>().getBody());
b.create<memref::GlobalOp>(
UnknownLoc::get(b.getContext()), globalOp.getSymName(),
/*sym_visibility=*/globalOp.getSymVisibilityAttr(),
/*type=*/memrefType,
/*initial_value=*/globalOp.getValue().value(),
/*constant=*/globalOp.getIsMutable() ? false : true,
/*alignment=*/nullptr);
return success();
}
static LogicalResult
bufferizeMLProgramGlobaLoadOp(ml_program::GlobalLoadOp globalLoadOp,
OpBuilder &b, SmallVector<Operation *> &toErase) {
RankedTensorType tensorType = cast<RankedTensorType>(globalLoadOp.getType());
MemRefType memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
b.setInsertionPoint(globalLoadOp);
Value globalVal = b.create<memref::GetGlobalOp>(
globalLoadOp.getLoc(), memrefType,
globalLoadOp.getGlobalAttr().getLeafReference());
globalVal = b.create<bufferization::ToTensorOp>(globalLoadOp->getLoc(),
tensorType, globalVal);
globalLoadOp->getResult(0).replaceAllUsesWith(globalVal);
return success();
}
static LogicalResult
bufferizeMLProgramGlobaStoreOp(ml_program::GlobalStoreOp globalStoreOp,
OpBuilder &b,
SmallVector<Operation *> &toErase) {
RankedTensorType tensorType =
cast<RankedTensorType>(globalStoreOp.getValue().getType());
MemRefType memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
b.setInsertionPoint(globalStoreOp);
Value memref = b.create<memref::GetGlobalOp>(
globalStoreOp.getLoc(), memrefType,
globalStoreOp.getGlobalAttr().getLeafReference());
Value copyValue = b.create<bufferization::ToMemrefOp>(
globalStoreOp->getLoc(), memrefType, globalStoreOp.getValue());
b.create<memref::CopyOp>(globalStoreOp->getLoc(), copyValue, memref);
return success();
}
namespace {
/// Converts MLProgram operations that work on tensor-type operands or results
/// to work on buffers.
class MLProgramBufferize : public MLProgramBufferizeBase<MLProgramBufferize> {
void getDependentDialects(DialectRegistry &registry) const override {
registry
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
}
void runOnOperation() override {
auto module = getOperation();
OpBuilder b(module.getBodyRegion());
SmallVector<Operation *> toErase;
auto walkResult = module.walk([&](ml_program::GlobalOp op) {
if (auto type = dyn_cast<RankedTensorType>(op.getType())) {
if (!type.hasStaticShape()) {
// If the ml_program.global has dynamically shaped tensor.
op.emitError(
"unimplemented: global op bufferization with dynamic shape");
return WalkResult::interrupt();
}
} else {
// If the ml_program.global is of non-tensor type.
op.emitError("unsupported global op type");
return WalkResult::interrupt();
}
if (failed(bufferizeMLProgramGlobalOp(op, b))) {
op.emitError("bufferization for this op failed");
return WalkResult::interrupt();
}
toErase.push_back(op);
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return signalPassFailure();
module.walk([&](ml_program::GlobalLoadOp op) {
if (failed(bufferizeMLProgramGlobaLoadOp(op, b, toErase))) {
op.emitError("bufferization for this op failed");
return;
}
toErase.push_back(op);
});
module.walk([&](ml_program::GlobalStoreOp op) {
if (failed(bufferizeMLProgramGlobaStoreOp(op, b, toErase))) {
op.emitError("bufferization for this op failed");
return;
}
toErase.push_back(op);
});
for (auto op : llvm::reverse(toErase))
op->erase();
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::torch::RefBackend::createMLProgramBufferizePass() {
return std::make_unique<MLProgramBufferize>();
}
//===----------------------------------------------------------------------===//
// ExpandOpsForLLVM
//===----------------------------------------------------------------------===//
namespace {
class ExpandOpsForLLVM : public ExpandOpsForLLVMBase<ExpandOpsForLLVM> {
void runOnOperation() override {
auto func = getOperation();
auto *context = &getContext();
RewritePatternSet patterns(context);
populateExpandTanhPattern(patterns);
patterns.add<math::ErfPolynomialApproximation>(patterns.getContext());
ConversionTarget target(*context);
target.addLegalDialect<func::FuncDialect>();
target.addLegalDialect<math::MathDialect>();
target.addLegalDialect<arith::ArithDialect>();
target.addIllegalOp<math::TanhOp>();
target.addIllegalOp<math::ErfOp>();
if (failed(applyPartialConversion(func, target, std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::RefBackend::createExpandOpsForLLVMPass() {
return std::make_unique<ExpandOpsForLLVM>();
}
//===----------------------------------------------------------------------===//
// MungeMemrefCopy
//===----------------------------------------------------------------------===//
Operation *createLinalgCopyOp(OpBuilder &b, Location loc, Value from,
Value to) {
auto memrefTypeFrom = cast<MemRefType>(from.getType());
auto memrefTypeTo = cast<MemRefType>(to.getType());
(void)memrefTypeFrom;
assert(memrefTypeFrom && memrefTypeTo &&
memrefTypeFrom.getRank() == memrefTypeTo.getRank());
AffineMap id =
AffineMap::getMultiDimIdentityMap(memrefTypeTo.getRank(), b.getContext());
SmallVector<utils::IteratorType> iteratorTypes(memrefTypeTo.getRank(),
utils::IteratorType::parallel);
return b.create<linalg::GenericOp>(
loc,
/*inputs=*/from,
/*outputs=*/to,
/*indexingMaps=*/llvm::ArrayRef({id, id}),
/*iteratorTypes=*/iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args.front());
});
}
namespace {
class MemrefCopyOpToLinalg : public OpRewritePattern<memref::CopyOp> {
using OpRewritePattern<memref::CopyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::CopyOp copyOp,
PatternRewriter &rewriter) const override {
Operation *linalgCopy = createLinalgCopyOp(
rewriter, copyOp.getLoc(), copyOp.getSource(), copyOp.getTarget());
rewriter.replaceOp(copyOp, linalgCopy->getResults());
return success();
}
};
class MungeMemrefCopy : public MungeMemrefCopyBase<MungeMemrefCopy> {
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(&getContext());
patterns.insert<MemrefCopyOpToLinalg>(context);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::RefBackend::createMungeMemrefCopyPass() {
return std::make_unique<MungeMemrefCopy>();
}
namespace {
class GeneralizeTensorConcat
: public GeneralizeTensorConcatBase<GeneralizeTensorConcat> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tensor::TensorDialect>();
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
tensor::populateDecomposeTensorConcatPatterns(patterns);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::RefBackend::createGeneralizeTensorConcatPass() {
return std::make_unique<GeneralizeTensorConcat>();
}
namespace {
class GeneralizeTensorPad
: public GeneralizeTensorPadBase<GeneralizeTensorPad> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<linalg::LinalgDialect>();
}
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(&getContext());
patterns.insert<linalg::GeneralizePadOpPattern>(context);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::RefBackend::createGeneralizeTensorPadPass() {
return std::make_unique<GeneralizeTensorPad>();
}