2022-03-11 01:54:13 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
|
|
|
|
#include "../PassDetail.h"
|
|
|
|
#include "PopulatePatterns.h"
|
|
|
|
#include "Utils.h"
|
|
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
#include "mlir/IR/Matchers.h"
|
|
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
using namespace mlir::torch;
|
|
|
|
using namespace mlir::torch::Torch;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
// TODO: Dropout should probably be handled in DecomposeComplexOps instead of
|
|
|
|
// here.
|
|
|
|
class ConvertAtenDropoutOp : public OpConversionPattern<AtenDropoutOp> {
|
|
|
|
public:
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
|
|
matchAndRewrite(AtenDropoutOp op, OpAdaptor adaptor,
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
bool train;
|
|
|
|
if (!matchPattern(op.train(), m_TorchConstantBool(&train)))
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
"Expected train to be constant bool.");
|
|
|
|
|
|
|
|
if (train)
|
|
|
|
return failure();
|
|
|
|
auto resultType = getTypeConverter()
|
|
|
|
->convertType(op->getResult(0).getType())
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
|
|
|
|
adaptor.input());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
2022-03-16 07:57:33 +08:00
|
|
|
class ConvertValsemVariantAtenUniformOp
|
|
|
|
: public OpConversionPattern<ValsemVariantAtenUniformOp> {
|
2022-03-11 01:54:13 +08:00
|
|
|
public:
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
2022-03-16 07:57:33 +08:00
|
|
|
matchAndRewrite(ValsemVariantAtenUniformOp op, OpAdaptor adaptor,
|
2022-03-11 01:54:13 +08:00
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
return failure();
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
Value self = adaptor.self();
|
|
|
|
Value from = adaptor.from();
|
|
|
|
Value to = adaptor.to();
|
|
|
|
Value generator = adaptor.generator();
|
|
|
|
RankedTensorType resultType = self.getType().cast<RankedTensorType>();
|
|
|
|
Type elemTy = resultType.getElementType();
|
|
|
|
|
|
|
|
if (!elemTy.isa<mlir::FloatType>())
|
|
|
|
return rewriter.notifyMatchFailure(op, "This op only support float type");
|
|
|
|
|
|
|
|
if (!generator.getType().isa<Torch::NoneType>())
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "The generator has to ben None because only global default "
|
|
|
|
"generator is supported");
|
|
|
|
|
|
|
|
// Build the core formula of LCG Algorithm that makes use of element index:
|
|
|
|
// For output matrix with rank N:
|
|
|
|
// temp1 = (cast(I64, index(D.0)) + seed) * multiplier + incrementStep
|
|
|
|
// ...
|
|
|
|
// tempN = (cast(I64, index(D.(N))) + tempN-1) * multiplier + incr
|
|
|
|
// Refer to https://reviews.llvm.org/D101364.
|
|
|
|
// The value of multiplier and incrementStep are referenced from
|
|
|
|
// https://en.wikipedia.org/wiki/Linear_congruential_generator for 2^64.
|
|
|
|
Value multiplier = rewriter.create<arith::ConstantOp>(
|
|
|
|
loc, rewriter.getI64IntegerAttr(6364136223846793005));
|
|
|
|
Value incrementStep = rewriter.create<arith::ConstantOp>(
|
|
|
|
loc, rewriter.getI64IntegerAttr(1442695040888963407));
|
|
|
|
// Tn = (index + Tn-1) * multiplier + incrementStep
|
|
|
|
auto getNextTemp = [&](OpBuilder &b, Value index, Value temp) {
|
|
|
|
Value castIndex =
|
|
|
|
b.create<arith::IndexCastOp>(loc, b.getI64Type(), index);
|
|
|
|
Value add = b.create<arith::AddIOp>(loc, castIndex, temp);
|
|
|
|
Value mult = b.create<arith::MulIOp>(loc, add, multiplier);
|
|
|
|
return b.create<arith::AddIOp>(loc, mult, incrementStep);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Get initial seed, min and max used by `linalg.generic` compute payload.
|
|
|
|
Value initialSeed = rewriter.create<TorchConversion::GetNextSeedOp>(loc);
|
|
|
|
Value min = convertScalarToDtype(rewriter, loc, from, elemTy);
|
|
|
|
Value max = convertScalarToDtype(rewriter, loc, to, elemTy);
|
|
|
|
|
|
|
|
// Construct the `linalg.generic` op.
|
|
|
|
auto resultRank = resultType.getRank();
|
|
|
|
SmallVector<AffineMap, 1> indexingMaps(
|
|
|
|
1, rewriter.getMultiDimIdentityMap(resultRank));
|
|
|
|
SmallVector<StringRef> iteratorTypes(resultRank,
|
|
|
|
getParallelIteratorTypeName());
|
|
|
|
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, self);
|
|
|
|
Value initTensor =
|
|
|
|
rewriter.create<linalg::InitTensorOp>(loc, sizes, elemTy);
|
|
|
|
Value uniformRes =
|
|
|
|
rewriter
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
loc, initTensor.getType(), /*inputs=*/ValueRange{},
|
|
|
|
/*outputs=*/initTensor, indexingMaps, iteratorTypes,
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
Value temp = initialSeed;
|
|
|
|
for (int i = 0; i < resultRank; i++) {
|
|
|
|
Value index = b.create<linalg::IndexOp>(loc, i);
|
|
|
|
temp = getNextTemp(b, index, temp);
|
|
|
|
}
|
|
|
|
// scale = (max - min) * const(F64, 5.4210108E-20)
|
|
|
|
// which is derived from rand(min,max) =
|
|
|
|
// rand()/(RAND_MAX/(max-min)) where RAND_MAX = 2^64 - 1
|
|
|
|
Value epsilon = b.create<arith::ConstantOp>(
|
|
|
|
loc, b.getFloatAttr(min.getType(), 5.4210108E-20));
|
|
|
|
Value range = b.create<arith::SubFOp>(loc, max, min);
|
|
|
|
Value scale = b.create<arith::MulFOp>(loc, range, epsilon);
|
|
|
|
|
|
|
|
// res = cast(F64, tempN) * scale + min
|
|
|
|
Value updateFloat =
|
|
|
|
b.create<arith::UIToFPOp>(loc, elemTy, temp);
|
|
|
|
Value updateScaled =
|
|
|
|
b.create<arith::MulFOp>(loc, updateFloat, scale);
|
|
|
|
Value res = b.create<arith::AddFOp>(loc, updateScaled, min);
|
|
|
|
b.create<linalg::YieldOp>(loc, res);
|
|
|
|
})
|
|
|
|
.getResult(0);
|
|
|
|
|
|
|
|
Type newResultType = getTypeConverter()->convertType(op.getType());
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, uniformRes);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
|
|
void mlir::torch::torch_to_linalg::populateRandomPatternsAndLegality(
|
|
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
|
|
ConversionTarget &target) {
|
|
|
|
MLIRContext *context = patterns.getContext();
|
|
|
|
target.addIllegalOp<AtenDropoutOp>();
|
|
|
|
patterns.add<ConvertAtenDropoutOp>(typeConverter, context);
|
2022-03-16 07:57:33 +08:00
|
|
|
target.addIllegalOp<ValsemVariantAtenUniformOp>();
|
|
|
|
patterns.add<ConvertValsemVariantAtenUniformOp>(typeConverter, context);
|
2022-03-11 01:54:13 +08:00
|
|
|
}
|