mirror of https://github.com/llvm/torch-mlir
56 lines
1.7 KiB
Python
56 lines
1.7 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
"""Various configuration helpers for testing."""
|
||
|
|
||
|
import ast
|
||
|
|
||
|
from . import logging
|
||
|
from .frontend import *
|
||
|
from .interfaces import *
|
||
|
from .partial_eval_base import *
|
||
|
from .target import *
|
||
|
from .value_coder_base import *
|
||
|
|
||
|
|
||
|
def create_import_dump_decorator(*,
|
||
|
target_factory: TargetFactory = GenericTarget64
|
||
|
):
|
||
|
config = create_test_config(target_factory=target_factory)
|
||
|
logging.debug("Testing with config: {}", config)
|
||
|
|
||
|
def decorator(f):
|
||
|
fe = ImportFrontend(config=config)
|
||
|
fe.import_global_function(f)
|
||
|
print("// -----")
|
||
|
print(fe.ir_module.to_asm())
|
||
|
return f
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
def create_test_config(target_factory: TargetFactory = GenericTarget64):
|
||
|
value_coder = BuiltinsValueCoder()
|
||
|
pe_hook = build_default_partial_eval_hook()
|
||
|
|
||
|
return Configuration(target_factory=target_factory,
|
||
|
value_coder=value_coder,
|
||
|
partial_eval_hook=pe_hook)
|
||
|
|
||
|
|
||
|
def build_default_partial_eval_hook() -> PartialEvalHook:
|
||
|
pe = MappedPartialEvalHook()
|
||
|
### Modules
|
||
|
pe.enable_getattr(for_type=ast.__class__) # The module we use is arbitrary.
|
||
|
|
||
|
### Tuples
|
||
|
# Enable attribute resolution on tuple, which includes namedtuple (which is
|
||
|
# really what we want).
|
||
|
pe.enable_getattr(for_type=tuple)
|
||
|
|
||
|
### Temp: resolve a function to a template call for testing
|
||
|
import math
|
||
|
pe.enable_template_call("__global$math.ceil", for_ref=math.ceil)
|
||
|
pe.enable_template_call("__global$math.isclose", for_ref=math.isclose)
|
||
|
return pe
|