mirror of https://github.com/llvm/torch-mlir
107 lines
3.2 KiB
Python
107 lines
3.2 KiB
Python
|
# -*- Python -*-
|
||
|
# This file is licensed under a pytorch-style license
|
||
|
# See frontends/pytorch/LICENSE for license information.
|
||
|
|
||
|
from PIL import Image
|
||
|
import requests
|
||
|
import torch
|
||
|
import torchvision.models as models
|
||
|
from torchvision import transforms
|
||
|
import typing
|
||
|
|
||
|
import torch_mlir
|
||
|
|
||
|
import npcomp
|
||
|
from npcomp.compiler.pytorch.backend import refjit, frontend_lowering, iree
|
||
|
from npcomp.compiler.utils import logging
|
||
|
|
||
|
logging.enable()
|
||
|
|
||
|
mb = torch_mlir.ModuleBuilder()
|
||
|
|
||
|
def load_and_preprocess_image(url: str):
|
||
|
img = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
||
|
# preprocessing pipeline
|
||
|
preprocess = transforms.Compose(
|
||
|
[
|
||
|
transforms.Resize(256),
|
||
|
transforms.CenterCrop(224),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||
|
]
|
||
|
)
|
||
|
img_preprocessed = preprocess(img)
|
||
|
return torch.unsqueeze(img_preprocessed, 0)
|
||
|
|
||
|
|
||
|
def load_labels():
|
||
|
classes_text = requests.get(
|
||
|
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt",
|
||
|
stream=True,
|
||
|
).text
|
||
|
labels = [line.strip() for line in classes_text.splitlines()]
|
||
|
return labels
|
||
|
|
||
|
|
||
|
def top3_possibilities(res):
|
||
|
_, indexes = torch.sort(res, descending=True)
|
||
|
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100
|
||
|
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]]
|
||
|
return top3
|
||
|
|
||
|
|
||
|
def predictions(torch_func, jit_func, img, labels):
|
||
|
golden_prediction = top3_possibilities(torch_func(img))
|
||
|
print("PyTorch prediction")
|
||
|
print(golden_prediction)
|
||
|
prediction = top3_possibilities(torch.from_numpy(jit_func(img)))
|
||
|
print("NPCOMP prediction")
|
||
|
print(prediction)
|
||
|
|
||
|
|
||
|
class ResNet18Module(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.resnet = models.resnet18(pretrained=True)
|
||
|
self.train(False)
|
||
|
|
||
|
def forward(self, img):
|
||
|
return self.resnet.forward(img)
|
||
|
|
||
|
|
||
|
class TestModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.s = ResNet18Module()
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.s.forward(x)
|
||
|
|
||
|
|
||
|
test_module = TestModule()
|
||
|
class_annotator = torch_mlir.ClassAnnotator()
|
||
|
recursivescriptmodule = torch.jit.script(test_module)
|
||
|
torch.jit.save(recursivescriptmodule, "/tmp/foo.pt")
|
||
|
|
||
|
class_annotator.exportNone(recursivescriptmodule._c._type())
|
||
|
class_annotator.exportPath(recursivescriptmodule._c._type(), ["forward"])
|
||
|
class_annotator.annotateArgs(
|
||
|
recursivescriptmodule._c._type(),
|
||
|
["forward"],
|
||
|
[None, ([-1, -1, -1, -1], torch.float32, True),],
|
||
|
)
|
||
|
# TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule.
|
||
|
mb.import_module(recursivescriptmodule._c, class_annotator)
|
||
|
|
||
|
backend = refjit.RefjitNpcompBackend()
|
||
|
compiled = backend.compile(frontend_lowering.lower_object_graph(mb.module))
|
||
|
jit_module = backend.load(compiled)
|
||
|
|
||
|
image_url = (
|
||
|
"https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg"
|
||
|
)
|
||
|
print("load image from " + image_url)
|
||
|
img = load_and_preprocess_image(image_url)
|
||
|
labels = load_labels()
|
||
|
predictions(test_module.forward, jit_module.forward, img, labels)
|