torch-mlir/test/Dialect/Torch/decompose-complex-ops.mlir

1335 lines
108 KiB
MLIR
Raw Normal View History

// RUN: torch-mlir-opt -torch-decompose-complex-ops -split-input-file %s | FileCheck %s
// CHECK-LABEL: func.func @matmul_no_decompose
// CHECK: torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
func.func @matmul_no_decompose(%arg0: !torch.vtensor<[?,?,?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?],f32>) -> !torch.tensor {
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
return %0 : !torch.tensor
}
// -----
// CHECK-LABEL: func.func @matmul_decompose_2d
// CHECK: torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.tensor
func.func @matmul_decompose_2d(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.tensor {
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.tensor
return %0 : !torch.tensor
}
// -----
// CHECK-LABEL: func.func @matmul_decompose_3d(
// CHECK: torch.aten.bmm %arg0, %arg1 : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
func.func @matmul_decompose_3d(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?],f32>) -> !torch.tensor {
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.tensor
return %0 : !torch.tensor
}
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// -----
// CHECK-LABEL: func.func @torch.aten.softmax.int(
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>,
// CHECK-SAME: %[[DIM:.*]]: !torch.int) -> !torch.tensor<[2,3],f32> {
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[KEEP_DIM0:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[KEEP_DIM0]] :
// CHECK-SAME: !torch.tensor<[2,3],f32>, !torch.int, !torch.bool -> !torch.tensor<[?,?],f32>, !torch.tensor<[?,?],si64>
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[2,3],f32>,
// CHECK-SAME: !torch.tensor<[?,?],f32>, !torch.float -> !torch.tensor<[2,3],f32>
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<int>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
// CHECK-SAME: !torch.tensor<[2,3],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.tensor<[?,?],f32>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[2,3],f32>, !torch.tensor<[?,?],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[2,3],f32> to !torch.tensor<[2,3],f32>
// CHECK: return %[[RET]] : !torch.tensor<[2,3],f32>
func.func @torch.aten.softmax.int(%t: !torch.tensor<[2,3],f32>, %dim: !torch.int) -> !torch.tensor<[2,3],f32> {
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
%dtype = torch.constant.none
%ret = torch.aten.softmax.int %t, %dim, %dtype: !torch.tensor<[2,3],f32>, !torch.int, !torch.none -> !torch.tensor<[2,3],f32>
return %ret : !torch.tensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.softmax.int$cst_dim(
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[2,3],f32>) -> !torch.tensor<[2,3],f32> {
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[DIM:.*]] = torch.constant.int 1
// CHECK: %[[TRU:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<[2,3],f32>, !torch.int, !torch.bool ->
// CHECK-SAME: !torch.tensor<[2,1],f32>, !torch.tensor<[2,1],si64>
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[2,3],f32>,
// CHECK-SAME: !torch.tensor<[2,1],f32>, !torch.float -> !torch.tensor<[2,3],f32>
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<int>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
// CHECK-SAME !torch.tensor<[2,3],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.tensor<[2,1],f32>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[2,3],f32>, !torch.tensor<[2,1],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[2,3],f32> to !torch.tensor<[2,3],f32>
// CHECK: return %[[RET]] : !torch.tensor<[2,3],f32>
func.func @torch.aten.softmax.int$cst_dim(%t: !torch.tensor<[2,3],f32>) -> !torch.tensor<[2,3],f32> {
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
%none = torch.constant.none
%dim = torch.constant.int 1
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<[2,3],f32>, !torch.int, !torch.none -> !torch.tensor<[2,3],f32>
return %ret : !torch.tensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.softmax.int$dyn_shape(
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK-SAME: %[[T:.*]]: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[DIM:.*]] = torch.constant.int 1
// CHECK: %[[TRU:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<[?,?],f32>, !torch.int, !torch.bool ->
// CHECK-SAME: !torch.tensor<[?,1],f32>, !torch.tensor<[?,1],si64>
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<[?,?],f32>,
// CHECK-SAME: !torch.tensor<[?,1],f32>, !torch.float -> !torch.tensor<[?,?],f32>
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<[?,?],f32> -> !torch.tensor<[?,?],f32>
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<int>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
// CHECK-SAME: !torch.tensor<[?,?],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.tensor<[?,1],f32>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<[?,?],f32>, !torch.tensor<[?,1],f32> -> !torch.tensor<[?,?],f32>
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<[?,?],f32> to !torch.tensor<[?,?],f32>
// CHECK: return %[[RET]] : !torch.tensor<[?,?],f32>
func.func @torch.aten.softmax.int$dyn_shape(%t: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
%none = torch.constant.none
%dim = torch.constant.int 1
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<[?,?],f32>, !torch.int, !torch.none -> !torch.tensor<[?,?],f32>
return %ret : !torch.tensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.softmax.int$unknown_shape(
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK-SAME: %[[T:.*]]: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[DIM:.*]] = torch.constant.int 1
// CHECK: %[[TRU:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[T]], %[[DIM]], %[[TRU]] : !torch.tensor<*,f32>, !torch.int, !torch.bool
// CHECK-SAME: -> !torch.tensor<*,f32>, !torch.tensor<*,si64>
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[T]], %[[VAL]], %[[FLOAT1]] : !torch.tensor<*,f32>, !torch.tensor<*,f32>,
// CHECK-SAME: !torch.float -> !torch.tensor<*,f32>
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.tensor<*,f32> -> !torch.tensor<*,f32>
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[DIM]] : (!torch.int) -> !torch.list<int>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[KEEP_DIM:.*]] = torch.constant.bool true
// CHECK: %[[SUM_DTYPE:.*]] = torch.constant.none
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIM_LIST]], %[[KEEP_DIM]], %[[SUM_DTYPE]] :
// CHECK-SAME: !torch.tensor<*,f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.tensor<*,f32>
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
// CHECK: %[[SOFTMAX:.*]] = torch.aten.div.Tensor %[[EXP]], %[[SUM]] : !torch.tensor<*,f32>, !torch.tensor<*,f32> -> !torch.tensor<*,f32>
// CHECK: %[[RET:.*]] = torch.tensor_static_info_cast %[[SOFTMAX]] : !torch.tensor<*,f32> to !torch.tensor<*,f32>
// CHECK: return %[[RET]] : !torch.tensor<*,f32>
func.func @torch.aten.softmax.int$unknown_shape(%t: !torch.tensor<*,f32>) -> !torch.tensor<*,f32> {
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
%none = torch.constant.none
%dim = torch.constant.int 1
%ret = torch.aten.softmax.int %t, %dim, %none : !torch.tensor<*,f32>, !torch.int, !torch.none -> !torch.tensor<*,f32>
return %ret : !torch.tensor<*,f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.size(
// CHECK-SAME: %[[T:.*]]: !torch.vtensor<[?,3],f32>) -> !torch.list<int> {
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[T]], %[[CST0]] : !torch.vtensor<[?,3],f32>, !torch.int -> !torch.int
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[T]], %[[CST1]] : !torch.vtensor<[?,3],f32>, !torch.int -> !torch.int
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: return %[[SIZE]] : !torch.list<int>
func.func @torch.aten.size(%arg0: !torch.vtensor<[?,3],f32>) -> !torch.list<int> {
%0 = torch.aten.size %arg0 : !torch.vtensor<[?,3],f32> -> !torch.list<int>
return %0 : !torch.list<int>
}
// -----
// CHECK-LABEL: func.func @torch.aten.arange() -> !torch.vtensor<[?],si64> {
// CHECK: %[[CST5:.*]] = torch.constant.int 5
// CHECK: %[[CSTN:.*]] = torch.constant.none
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[RESULT:.*]] = torch.aten.arange.start_step %[[CST0]], %[[CST5]], %[[CST1]], %[[CSTN]], %[[CSTN]], %[[CSTN]], %[[CSTN]] :
// CHECK-SAME: !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
// CHECK: return %[[RESULT]] : !torch.vtensor<[?],si64>
func.func @torch.aten.arange() -> !torch.vtensor<[?],si64> {
%int5 = torch.constant.int 5
%none = torch.constant.none
%0 = torch.aten.arange %int5, %none, %none, %none, %none : !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
return %0 : !torch.vtensor<[?],si64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.arange.start() -> !torch.vtensor<[?],si64> {
// CHECK: %[[CST10:.*]] = torch.constant.int 10
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CSTN:.*]] = torch.constant.none
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[RESULT:.*]] = torch.aten.arange.start_step %[[CST0]], %[[CST10]], %[[CST1]], %[[CSTN]], %[[CSTN]], %[[CSTN]], %[[CSTN]] :
// CHECK-SAME: !torch.int, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
// CHECK: return %[[RESULT]] : !torch.vtensor<[?],si64>
func.func @torch.aten.arange.start() -> !torch.vtensor<[?],si64> {
%int10 = torch.constant.int 10
%int0 = torch.constant.int 0
%none = torch.constant.none
%0 = torch.aten.arange.start %int0, %int10, %none, %none, %none, %none : !torch.int, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?],si64>
return %0 : !torch.vtensor<[?],si64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.argmax(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[1,?],si64> {
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[INP]], %[[CST0]], %[[TRUE]] :
// CHECK-SAME: !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?],f32>, !torch.vtensor<[1,?],si64>
// CHECK: return %[[IND]] : !torch.vtensor<[1,?],si64>
func.func @torch.aten.argmax(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[1,?],si64> {
%int0 = torch.constant.int 0
%true = torch.constant.bool true
%0 = torch.aten.argmax %arg0, %int0, %true : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?],si64>
return %0 : !torch.vtensor<[1,?],si64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.argmax$reduceall(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],si64> {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[FLATTEN:.*]] = torch.aten.flatten.using_ints %[[INP]], %[[CST0]], %[[CST1]] :
// CHECK-SAME: !torch.vtensor<[?,?],f32>, !torch.int, !torch.int -> !torch.vtensor<[?],f32>
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[FLATTEN]], %[[CST0]], %[[FALSE]] :
// CHECK-SAME: !torch.vtensor<[?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[],f32>, !torch.vtensor<[],si64>
// CHECK: return %[[IND]] : !torch.vtensor<[],si64>
func.func @torch.aten.argmax$reduceall(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],si64> {
%none = torch.constant.none
%false = torch.constant.bool false
%0 = torch.aten.argmax %arg0, %none, %false : !torch.vtensor<[?,?],f32>, !torch.none, !torch.bool -> !torch.vtensor<[],si64>
return %0 : !torch.vtensor<[],si64>
}
2022-01-30 01:10:50 +08:00
// -----
// CHECK-LABEL: func.func @torch.aten.square(
2022-01-30 01:10:50 +08:00
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[SQUARE:.*]] = torch.aten.mul.Tensor %[[INPUT]], %[[INPUT]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
2022-01-30 01:10:50 +08:00
// CHECK: return %[[SQUARE]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten.square(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
2022-01-30 01:10:50 +08:00
%0 = torch.aten.square %arg0 : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.var$unbiased(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
// CHECK: %[[CST_TRUE:.*]] = torch.constant.bool true
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST0]], %[[CST1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool false
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[CST_TRUE_0:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[CST_TRUE_0]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[MUL]], %[[DIM1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[1,1],f64>, !torch.int -> !torch.vtensor<[1,1],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[1,1],f64>, !torch.float -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[CST1_1:.*]] = torch.constant.int 1
// CHECK: %[[DIM0_0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL_0:.*]] = torch.aten.mul.int %[[CST1_1]], %[[DIM0_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1_0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[MUL_0]], %[[DIM1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[CST1_2:.*]] = torch.constant.int 1
// CHECK: %[[NUM_ELEMENTS_0_SUB_1:.*]] = torch.aten.sub.int %[[NUM_ELEMENTS_0]], %[[CST1_2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[UNBIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0_SUB_1]] : !torch.vtensor<[],f64>, !torch.int -> !torch.vtensor<[],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_RESULT:.*]] = torch.aten.to.dtype %[[UNBIASED_VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
// CHECK: return %[[DOWNCAST_RESULT]] : !torch.vtensor<[],f32>
func.func @torch.aten.var$unbiased(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
2022-01-30 01:10:50 +08:00
%true = torch.constant.bool true
%0 = torch.aten.var %arg0, %true: !torch.vtensor<[?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
return %0 : !torch.vtensor<[],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.var$biased(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
// CHECK: %[[CST_FALSE:.*]] = torch.constant.bool false
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST0]], %[[CST1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool false
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[CST_TRUE:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[CST_TRUE]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[MUL]], %[[DIM1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[1,1],f64>, !torch.int -> !torch.vtensor<[1,1],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[1,1],f64>, !torch.float -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[CST1_1:.*]] = torch.constant.int 1
// CHECK: %[[DIM0_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL_0:.*]] = torch.aten.mul.int %[[CST1_1]], %[[DIM0_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[MUL_0]], %[[DIM1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[BIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0]] : !torch.vtensor<[],f64>, !torch.int -> !torch.vtensor<[],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_RESULT:.*]] = torch.aten.to.dtype %[[BIASED_VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
// CHECK: return %[[DOWNCAST_RESULT]] : !torch.vtensor<[],f32>
func.func @torch.aten.var$biased(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
2022-01-30 01:10:50 +08:00
%false = torch.constant.bool false
%0 = torch.aten.var %arg0, %false: !torch.vtensor<[?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
return %0 : !torch.vtensor<[],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.std$unbiased(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
// CHECK: %[[CST_TRUE:.*]] = torch.constant.bool true
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST0]], %[[CST1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool false
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[CST_TRUE_0:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[CST_TRUE_0]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[MUL]], %[[DIM1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[1,1],f64>, !torch.int -> !torch.vtensor<[1,1],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[1,1],f64>, !torch.float -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[CST1_1:.*]] = torch.constant.int 1
// CHECK: %[[DIM0_0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL_0:.*]] = torch.aten.mul.int %[[CST1_1]], %[[DIM0_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1_0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[MUL_0]], %[[DIM1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[CST1_2:.*]] = torch.constant.int 1
// CHECK: %[[NUM_ELEMENTS_0_SUB_1:.*]] = torch.aten.sub.int %[[NUM_ELEMENTS_0]], %[[CST1_2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[UNBIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0_SUB_1]] : !torch.vtensor<[],f64>, !torch.int -> !torch.vtensor<[],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_VAR:.*]] = torch.aten.to.dtype %[[UNBIASED_VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[UNBIASED_STD:.*]] = torch.aten.sqrt %[[DOWNCAST_VAR]] : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
// CHECK: return %[[UNBIASED_STD]] : !torch.vtensor<[],f32>
func.func @torch.aten.std$unbiased(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
2022-01-30 01:10:50 +08:00
%true = torch.constant.bool true
%0 = torch.aten.std %arg0, %true: !torch.vtensor<[?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
return %0 : !torch.vtensor<[],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.std$biased(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
// CHECK: %[[CST_FALSE:.*]] = torch.constant.bool false
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST0]], %[[CST1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool false
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[DTYPE:.*]] = torch.constant.none
// CHECK: %[[CST_TRUE:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[CST_TRUE]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[MUL]], %[[DIM1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[1,1],f64>, !torch.int -> !torch.vtensor<[1,1],f64>
2022-01-30 01:10:50 +08:00
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[1,1],f64>, !torch.float -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[DTYPE]] : !torch.vtensor<[?,?],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[CST1_1:.*]] = torch.constant.int 1
// CHECK: %[[DIM0_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[MUL_0:.*]] = torch.aten.mul.int %[[CST1_1]], %[[DIM0_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[DIM1_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[MUL_0]], %[[DIM1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[BIASED_VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0]] : !torch.vtensor<[],f64>, !torch.int -> !torch.vtensor<[],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_VAR:.*]] = torch.aten.to.dtype %[[BIASED_VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[BIASED_STD:.*]] = torch.aten.sqrt %[[DOWNCAST_VAR]] : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
// CHECK: return %[[BIASED_STD]] : !torch.vtensor<[],f32>
func.func @torch.aten.std$biased(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32> {
2022-01-30 01:10:50 +08:00
%false = torch.constant.bool false
%0 = torch.aten.std %arg0, %false: !torch.vtensor<[?,?],f32>, !torch.bool -> !torch.vtensor<[],f32>
2022-01-30 01:10:50 +08:00
return %0 : !torch.vtensor<[],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten._unsafe_view$static
// CHECK-SAME: (%[[ARG0:.*]]: !torch.vtensor<[1,512,32],f32>)
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct
// CHECK-NOT: torch.aten._unsafe_view
// CHECK-NEXT: %[[RES:.*]] = torch.aten.view %[[ARG0]], %[[LIST]]
// CHECK-NEXT: return
func.func @torch.aten._unsafe_view$static(%arg0: !torch.vtensor<[1,512,32],f32>) -> !torch.vtensor<[1,2,256,32],f32> {
%c1 = torch.constant.int 1
%c2 = torch.constant.int 2
%c256 = torch.constant.int 256
%c32 = torch.constant.int 32
%0 = torch.prim.ListConstruct %c1, %c2, %c256, %c32 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten._unsafe_view %arg0, %0 : !torch.vtensor<[1,512,32],f32>, !torch.list<int> -> !torch.vtensor<[1,2,256,32],f32>
return %1 : !torch.vtensor<[1,2,256,32],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten._reshape_alias$static
// CHECK-SAME: (%[[ARG0:.*]]: !torch.vtensor<[1],f32>)
// CHECK: %[[LIST1:.*]] = torch.prim.ListConstruct
// CHECK: %[[LIST2:.*]] = torch.prim.ListConstruct
// CHECK-NOT: torch.aten._reshape_alias
// CHECK-NEXT: %[[RES:.*]] = torch.aten.view %[[ARG0]], %[[LIST1]]
// CHECK-NEXT: return
func.func @torch.aten._reshape_alias$static(%arg0: !torch.vtensor<[1],f32>) -> !torch.vtensor<[12,32],f32> {
%int1 = torch.constant.int 1
%int32 = torch.constant.int 32
%int12 = torch.constant.int 12
%0 = torch.prim.ListConstruct %int12, %int32 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %int32, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.aten._reshape_alias %arg0, %0, %1 : !torch.vtensor<[1],f32>, !torch.list<int>, !torch.list<int> -> !torch.vtensor<[12,32],f32>
return %2 : !torch.vtensor<[12,32],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten._unsafe_view$dynamic
// CHECK-SAME: (%[[ARG0:.*]]: !torch.vtensor<[?,?,?],f32>)
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct
// CHECK-NOT: torch.aten._unsafe_view
// CHECK-NEXT: %[[RES:.*]] = torch.aten.view %[[ARG0]], %[[LIST]]
// CHECK-NEXT: return
func.func @torch.aten._unsafe_view$dynamic(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[512,32],f32> {
%c256 = torch.constant.int 512
%c32 = torch.constant.int 32
%0 = torch.prim.ListConstruct %c256, %c32 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten._unsafe_view %arg0, %0 : !torch.vtensor<[?,?,?],f32>, !torch.list<int> -> !torch.vtensor<[512,32],f32>
return %1 : !torch.vtensor<[512,32],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten._log_softmax(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: %[[VAL:.*]], %[[IND:.*]] = torch.aten.max.dim %[[INP]], %[[INT0]], %[[TRUE]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[1,?,?],f32>, !torch.vtensor<[1,?,?],si64>
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[INP]], %[[VAL]], %[[FLOAT1]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[1,?,?],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[EXP:.*]] = torch.aten.exp %[[SUB]] : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[PRIM:.*]] = torch.prim.ListConstruct %[[INT0]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRU:.*]] = torch.constant.bool true
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[SUM_DIM:.*]] = torch.aten.sum.dim_IntList %[[EXP]], %[[PRIM]], %[[TRU]], %[[NONE]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,?,?],f32>
// CHECK: %[[LOG:.*]] = torch.aten.log %[[SUM_DIM]] : !torch.vtensor<[1,?,?],f32> -> !torch.vtensor<[1,?,?],f32>
// CHECK: %[[FLOAT_1:.*]] = torch.constant.float 1.000000e+00
2022-02-09 04:57:23 +08:00
// CHECK: %[[SUB1:.*]] = torch.aten.sub.Tensor %[[SUB]], %[[LOG]], %[[FLOAT_1]] : !torch.vtensor<[?,?,?],f32>,
// CHECK-SAME: !torch.vtensor<[1,?,?],f32>, !torch.float -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[SUB1]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten._log_softmax(%arg0: !torch.vtensor<[?,?,?],f32> loc(unknown)) -> !torch.vtensor<[?,?,?],f32> {
%int0 = torch.constant.int 0
%false = torch.constant.bool false
%0 = torch.aten._log_softmax %arg0, %int0, %false : !torch.vtensor<[?,?,?],f32>, !torch.int, !torch.bool -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.bernoulli
// CHECK-SAME: (%[[INP:.*]]: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[CON2FLOAT:.*]] = torch.aten.to.dtype %[[INP]], %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[NONE_2:.*]] = torch.constant.none
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT0]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT1]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT2]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[TENSOR_SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[TENSOR_SIZE]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[UNF:.*]] = torch.valsem.aten.uniform %[[EMPTY]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE_2]] : !torch.vtensor<[?,?,?],f64>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Tensor %[[UNF]], %[[INP]] : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[?,?,?],f64> -> !torch.vtensor<[?,?,?],i1>
// CHECK: %[[INT7_2:.*]] = torch.constant.int 7
// CHECK: %[[FALSE_2:.*]] = torch.constant.bool false
// CHECK: %[[NONE_3:.*]] = torch.constant.none
// CHECK: %[[TODTYPE:.*]] = torch.aten.to.dtype %[[CMP]], %[[INT7_2]], %[[FALSE_2]], %[[FALSE_2]], %[[NONE_3]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[TODTYPE]] : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
// CHECK: return %[[CAST]] : !torch.vtensor
func.func @torch.aten.bernoulli(%arg0: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
%none = torch.constant.none
%0 = torch.aten.bernoulli %arg0, %none : !torch.vtensor<[?,?,?],f64>, !torch.none -> !torch.vtensor<[?,?,?],f64>
%1 = torch.tensor_static_info_cast %0 : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
return %1 : !torch.vtensor
}
// -----
// CHECK-LABEL: func.func @torch.valsem.aten.bernoulli.float
// CHECK-SAME: (%[[INP:.*]]: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[PROB:.*]] = torch.constant.float 4.000000e-01
// CHECK: %[[PROB_TENSOR:.*]] = torch.prim.NumToTensor.Scalar %[[PROB]] : !torch.float -> !torch.vtensor<[],f64>
// CHECK: %[[INT7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[CON2FLOAT:.*]] = torch.aten.to.dtype %[[INP]], %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[NONE_2:.*]] = torch.constant.none
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT0]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT1]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT2]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[TENSOR_SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[TENSOR_SIZE]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[UNF:.*]] = torch.valsem.aten.uniform %[[EMPTY]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE_2]] : !torch.vtensor<[?,?,?],f64>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Tensor %[[UNF]], %[[PROB_TENSOR]] : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[],f64> -> !torch.vtensor<[?,?,?],i1>
// CHECK: %[[INT7_2:.*]] = torch.constant.int 7
// CHECK: %[[FALSE_2:.*]] = torch.constant.bool false
// CHECK: %[[NONE_3:.*]] = torch.constant.none
// CHECK: %[[TODTYPE:.*]] = torch.aten.to.dtype %[[CMP]], %[[INT7_2]], %[[FALSE_2]], %[[FALSE_2]], %[[NONE_3]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[TODTYPE]] : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
// CHECK: return %[[CAST]] : !torch.vtensor
func.func @torch.valsem.aten.bernoulli.float(%arg0: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
%none = torch.constant.none
%prob = torch.constant.float 4.000000e-01
%0 = torch.valsem.aten.bernoulli.float %arg0, %prob, %none : !torch.vtensor<[?,?,?],f64>, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f64>
%1 = torch.tensor_static_info_cast %0 : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
return %1 : !torch.vtensor
}
// -----
// CHECK-LABEL: func.func @torch.valsem.aten.bernoulli.Tensor(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?,?],f64>,
// CHECK-SAME: %[[PROB:.*]]: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT7:.*]] = torch.constant.int 7
2022-02-09 04:57:23 +08:00
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[CON2FLOAT:.*]] = torch.aten.to.dtype %[[INP]], %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[NONE_2:.*]] = torch.constant.none
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT0]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT1]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT2]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[TENSOR_SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[TENSOR_SIZE]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[UNF:.*]] = torch.valsem.aten.uniform %[[EMPTY]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE_2]] : !torch.vtensor<[?,?,?],f64>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Tensor %[[UNF]], %[[PROB]] : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[?,?,?],f64> -> !torch.vtensor<[?,?,?],i1>
// CHECK: %[[INT7_2:.*]] = torch.constant.int 7
// CHECK: %[[FALSE_2:.*]] = torch.constant.bool false
// CHECK: %[[NONE_3:.*]] = torch.constant.none
// CHECK: %[[TODTYPE:.*]] = torch.aten.to.dtype %[[CMP]], %[[INT7_2]], %[[FALSE_2]], %[[FALSE_2]], %[[NONE_3]] :
// CHECK-SAME: !torch.vtensor<[?,?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f64>
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[TODTYPE]] : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
// CHECK: return %[[CAST]] : !torch.vtensor
func.func @torch.valsem.aten.bernoulli.Tensor(%arg0: !torch.vtensor<[?,?,?],f64>, %arg1: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
%none = torch.constant.none
%0 = torch.valsem.aten.bernoulli.Tensor %arg0, %arg1, %none : !torch.vtensor<[?,?,?],f64>, !torch.vtensor<[?,?,?],f64>, !torch.none -> !torch.vtensor<[?,?,?],f64>
%1 = torch.tensor_static_info_cast %0 : !torch.vtensor<[?,?,?],f64> to !torch.vtensor
return %1 : !torch.vtensor
}
// -----
// CHECK-LABEL: func.func @torch.aten.rand_like(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[INPUT]], %[[INT0]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[INPUT]], %[[INT1]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[INPUT]], %[[INT2]] : !torch.vtensor<[?,?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[TENSOR_SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[TENSOR_SIZE]], %[[INT6]], %[[NONE_0]], %[[NONE_0]], %[[NONE_0]], %[[NONE_0]] : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[UNIFORM:.*]] = torch.valsem.aten.uniform %[[EMPTY]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE_1]] : !torch.vtensor<[?,?,?],f32>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[CAST:.*]] = torch.tensor_static_info_cast %[[UNIFORM]] : !torch.vtensor<[?,?,?],f32> to !torch.vtensor
// CHECK: return %[[CAST]] : !torch.vtensor
func.func @torch.aten.rand_like(%arg0: !torch.vtensor<[?,?,?],f64>) -> !torch.vtensor {
%int6 = torch.constant.int 6
%none = torch.constant.none
%0 = torch.aten.rand_like %arg0, %int6, %none, %none, %none, %none : !torch.vtensor<[?,?,?],f64>, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f32>
%1 = torch.tensor_static_info_cast %0 : !torch.vtensor<[?,?,?],f32> to !torch.vtensor
return %1 : !torch.vtensor
}
// -----
// CHECK-LABEL: func.func @torch.aten.select.int(
// CHECK-SAME: %[[T:.*]]: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[?],si64> {
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[END:.*]] = torch.aten.add.int %[[CST0]], %[[CST1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[SLICE:.*]] = torch.aten.slice.Tensor %[[T]], %[[CST0]], %[[CST0]], %[[END]], %[[CST1]] :
// CHECK-SAME: !torch.vtensor<[?,?],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1,?],si64>
// CHECK: %[[SELECT:.*]] = torch.aten.squeeze.dim %[[SLICE]], %[[CST0]] :
// CHECK-SAME: !torch.vtensor<[1,?],si64>, !torch.int -> !torch.vtensor<[?],si64>
// CHECK: return %[[SELECT]] : !torch.vtensor<[?],si64>
func.func @torch.aten.select.int(%arg0: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[?],si64> {
%int0 = torch.constant.int 0
%0 = torch.aten.select.int %arg0, %int0, %int0 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.int -> !torch.vtensor<[?],si64>
return %0 : !torch.vtensor<[?],si64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.hardsigmoid(
2022-02-09 04:57:23 +08:00
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[CST2:.*]] = torch.constant.int 3
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[ADD:.*]] = torch.aten.add.Scalar %[[INPUT]], %[[CST2]], %[[CST1]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: %[[DIV:.*]] = torch.aten.div.Scalar %[[ADD]], %[[CST6]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[SIZES:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE:.*]] = torch.constant.none
2022-02-09 04:57:23 +08:00
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[SIZES]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] :
// CHECK-SAME: !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[CST1_TENSOR:.*]] = torch.valsem.aten.fill.Scalar %[[EMPTY]], %[[CST1]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
2022-02-09 04:57:23 +08:00
// CHECK: %[[MIN:.*]] = torch.aten.minimum %[[CST1_TENSOR]], %[[DIV]] : !torch.vtensor<[],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[SIZES:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
2022-02-09 04:57:23 +08:00
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[EMPTY_1:.*]] = torch.aten.empty.memory_format %[[SIZES]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]] :
// CHECK-SAME: !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[CST0_TENSOR:.*]] = torch.valsem.aten.fill.Scalar %[[EMPTY_1]], %[[CST0]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
2022-02-09 04:57:23 +08:00
// CHECK: %[[RET:.*]] = torch.aten.maximum %[[CST0_TENSOR]], %[[MIN]] : !torch.vtensor<[],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[RET]] : !torch.vtensor<[?,?],f32>
// CHECK: }
func.func @torch.aten.hardsigmoid(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%0 = torch.aten.hardsigmoid %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.hardswish(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[ADD:.*]] = torch.aten.add.Scalar %[[INP]], %[[INT3]], %[[INT1]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: %[[RELU:.*]] = torch.aten.relu %[[ADD]] : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[INT6_:.*]] = torch.constant.int 6
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
2022-02-09 04:57:23 +08:00
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[MEM:.*]] = torch.aten.empty.memory_format %[[LIST]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] :
// CHECK-SAME: !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[FILL:.*]] = torch.valsem.aten.fill.Scalar %[[MEM]], %[[INT6_]] : !torch.vtensor<[],f32>, !torch.int -> !torch.vtensor<[],f32>
2022-02-09 04:57:23 +08:00
// CHECK: %[[MIN:.*]] = torch.aten.minimum %[[RELU]], %[[FILL]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[DIV:.*]] = torch.aten.div.Scalar %[[MIN]], %[[INT6]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: %[[MUL:.*]] = torch.aten.mul.Tensor %[[DIV]], %[[INP]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[MUL]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.hardswish(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%0 = torch.aten.hardswish %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
2022-02-09 04:57:23 +08:00
// -----
// CHECK-LABEL: func.func @torch.aten.hardtanh(
2022-02-09 04:57:23 +08:00
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[?],f32>,
// CHECK-SAME: %[[MIN_VAL:.*]]: !torch.float,
// CHECK-SAME: %[[MAX_VAL:.*]]: !torch.float) -> !torch.vtensor<[?],f32> {
// CHECK: %[[SIZES:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
2022-02-09 04:57:23 +08:00
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[SIZES]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] :
// CHECK-SAME: !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[MIN_TENSOR:.*]] = torch.valsem.aten.fill.Scalar %[[EMPTY]], %[[MIN_VAL]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
2022-02-09 04:57:23 +08:00
// CHECK: %[[MIN:.*]] = torch.aten.maximum %[[INPUT]], %[[MIN_TENSOR]] : !torch.vtensor<[?],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[?],f32>
// CHECK: %[[SIZES:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
2022-02-09 04:57:23 +08:00
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[VAL_10:.*]] = torch.aten.empty.memory_format %[[SIZES]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] :
// CHECK-SAME: !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[MAX_TENSOR:.*]] = torch.valsem.aten.fill.Scalar %[[VAL_10]], %[[MAX_VAL]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
2022-02-09 04:57:23 +08:00
// CHECK: %[[RET:.*]] = torch.aten.minimum %[[MAX_TENSOR]], %[[MIN]] : !torch.vtensor<[],f32>, !torch.vtensor<[?],f32> -> !torch.vtensor<[?],f32>
// CHECK: return %[[RET]] : !torch.vtensor<[?],f32>
func.func @torch.aten.hardtanh(%arg0: !torch.vtensor<[?],f32>, %min: !torch.float, %max: !torch.float) -> !torch.vtensor<[?],f32> {
2022-02-09 04:57:23 +08:00
%0 = torch.aten.hardtanh %arg0, %min, %max : !torch.vtensor<[?],f32>, !torch.float, !torch.float -> !torch.vtensor<[?],f32>
return %0 : !torch.vtensor<[?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.new_zeros
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[2,3],f32> {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[INT2]], %[[INT3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[RES:.*]] = torch.aten.zeros %[[SIZE]], %[[INT6]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[2,3],f32>
// CHECK: }
func.func @torch.aten.new_zeros(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[2,3],f32> {
%none = torch.constant.none
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.new_zeros %arg0, %0, %none, %none, %none, %none : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
return %1 : !torch.vtensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.new_ones
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[3,4],si64> {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT4:.*]] = torch.constant.int 4
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[INT3]], %[[INT4]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[INT4_0:.*]] = torch.constant.int 4
// CHECK: %[[RES:.*]] = torch.aten.ones %[[SIZE]], %[[INT4_0]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[3,4],si64>
// CHECK: return %[[RES]] : !torch.vtensor<[3,4],si64>
// CHECK: }
func.func @torch.aten.new_ones(%arg0: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[3,4],si64> {
%none = torch.constant.none
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%0 = torch.prim.ListConstruct %int3, %int4 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.new_ones %arg0, %0, %none, %none, %none, %none : !torch.vtensor<[?,?],si64>, !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[3,4],si64>
return %1 : !torch.vtensor<[3,4],si64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.silu(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor {
// CHECK: %[[SIGMOID:.*]] = torch.aten.sigmoid %[[INP]] : !torch.vtensor<[?,?],f32> -> !torch.vtensor
// CHECK: %[[MUL:.*]] = torch.aten.mul.Tensor %[[SIGMOID]], %[[INP]] : !torch.vtensor, !torch.vtensor<[?,?],f32> -> !torch.vtensor
// CHECK: return %[[MUL]] : !torch.vtensor
func.func @torch.aten.silu(%arg0: !torch.vtensor<[?,?],f32> loc(unknown)) -> !torch.vtensor {
%0 = torch.aten.silu %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor
return %0 : !torch.vtensor
}
// -----
// CHECK-LABEL: func.func @torch.aten.full
// CHECK-SAME: () -> !torch.vtensor<[2,3],f32> {
// CHECK: %[[FLOAT5:.*]] = torch.constant.float 5.000000e+00
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[INT2]], %[[INT3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[MEM_FORMAT:.*]] = torch.constant.none
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[SIZE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[MEM_FORMAT]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
// CHECK: %[[RES:.*]] = torch.valsem.aten.fill.Scalar %[[EMPTY]], %[[FLOAT5]] : !torch.vtensor<[2,3],f32>, !torch.float -> !torch.vtensor<[2,3],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[2,3],f32>
func.func @torch.aten.full() -> !torch.vtensor<[2,3],f32> {
%float5.000000e00 = torch.constant.float 5.000000e+00
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%none = torch.constant.none
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.full %0, %float5.000000e00, %none, %none, %none, %none : !torch.list<int>, !torch.float, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
return %1 : !torch.vtensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.full_like(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[INT5:.*]] = torch.constant.int 5
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[INP]], %[[INT0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[INP]], %[[INT1]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[SIZE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?],f32>
// CHECK: %[[RES:.*]] = torch.valsem.aten.fill.Scalar %[[EMPTY]], %[[INT5]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.full_like(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%int5 = torch.constant.int 5
%none = torch.constant.none
%0 = torch.aten.full_like %arg0, %int5, %none, %none, %none, %none, %none : !torch.vtensor<[?,?],f32>, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.index_put(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?],f32>, %[[INDEX:.*]]: !torch.vtensor<[?],si64>,
// CHECK-SAME: %[[VALUES:.*]]: !torch.vtensor<[?],f32>,
// CHECK-SAME: %[[ACCUM:.*]]: !torch.bool) -> !torch.vtensor<[?],f32> {
// CHECK: %[[INDICES:.*]] = torch.prim.ListConstruct %[[INDEX]] : (!torch.vtensor<[?],si64>) -> !torch.list<vtensor>
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[RES:.*]] = torch.valsem.aten.index_put_impl %[[INP]], %[[INDICES]], %[[VALUES]], %[[ACCUM]], %[[FALSE]] : !torch.vtensor<[?],f32>, !torch.list<vtensor>, !torch.vtensor<[?],f32>, !torch.bool, !torch.bool -> !torch.vtensor<[?],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[?],f32>
func.func @torch.aten.index_put(%input: !torch.vtensor<[?],f32>, %index: !torch.vtensor<[?],si64>, %values: !torch.vtensor<[?],f32>, %accumulate : !torch.bool) -> !torch.vtensor<[?],f32> {
%indices = torch.prim.ListConstruct %index : (!torch.vtensor<[?],si64>) -> !torch.list<vtensor>
%0 = torch.aten.index_put %input, %indices, %values, %accumulate : !torch.vtensor<[?],f32>, !torch.list<vtensor>, !torch.vtensor<[?],f32>, !torch.bool -> !torch.vtensor<[?],f32>
return %0 : !torch.vtensor<[?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.expand_as(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,1,1],f32>, %[[OTHER:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[OTHER]], %[[INT0]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[OTHER]], %[[INT1]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[OTHER]], %[[INT2]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[RES:.*]] = torch.aten.broadcast_to %[[INP]], %[[SIZE]] : !torch.vtensor<[?,1,1],f32>, !torch.list<int> -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten.expand_as(%arg0: !torch.vtensor<[?,1,1],f32>, %arg1: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
%0 = torch.aten.expand_as %arg0, %arg1 : !torch.vtensor<[?,1,1],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten._to_copy(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[INP]], %[[INT0]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[INP]], %[[INT1]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[INP]], %[[INT2]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]], %[[DIM2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[SIZE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[RES:.*]] = torch.valsem.aten.copy %[[EMPTY]], %[[INP]], %[[FALSE]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32>, !torch.bool -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten._to_copy(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
%false = torch.constant.bool false
%none = torch.constant.none
%0 = torch.aten._to_copy %arg0, %none, %none, %none, %none, %false, %none : !torch.vtensor<[?,?,?],f32>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.dropout$eval(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[PROB:.*]] = torch.constant.float 1.000000e-01
// CHECK: %[[TRAIN:.*]] = torch.constant.bool false
// CHECK: return %[[INP:.*]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.dropout$eval(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%float1.000000e-01 = torch.constant.float 1.000000e-01
%false = torch.constant.bool false
%0 = torch.aten.dropout %arg0, %float1.000000e-01, %false : !torch.vtensor<[?,?],f32>, !torch.float, !torch.bool -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.dropout$train(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[PROB:.*]] = torch.constant.float 3.000000e-01
// CHECK: %[[TRAIN:.*]] = torch.constant.bool true
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[CST1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[ONEMINUSP:.*]] = torch.aten.sub.float %[[CST1]], %[[PROB]] : !torch.float, !torch.float -> !torch.float
// CHECK: %[[PROB_TENSOR:.*]] = torch.prim.NumToTensor.Scalar %[[ONEMINUSP]] : !torch.float -> !torch.vtensor<[],f64>
// CHECK: %[[INT7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[CON2FLOAT:.*]] = torch.aten.to.dtype %[[INP]], %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] :
// CHECK-SAME: !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[NONE_2:.*]] = torch.constant.none
// CHECK: %[[FLOAT0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[FLOAT1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[DIM0:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT0]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[DIM1:.*]] = torch.aten.size.int %[[CON2FLOAT]], %[[INT1]] : !torch.vtensor<[?,?],f64>, !torch.int -> !torch.int
// CHECK: %[[TENSOR_SIZE:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[DIM1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[EMPTY:.*]] = torch.aten.empty.memory_format %[[TENSOR_SIZE]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]], %[[NONE_1]] : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[?,?],f64>
// CHECK: %[[UNF:.*]] = torch.valsem.aten.uniform %[[EMPTY]], %[[FLOAT0]], %[[FLOAT1]], %[[NONE_2]] : !torch.vtensor<[?,?],f64>, !torch.float, !torch.float, !torch.none -> !torch.vtensor<[?,?],f64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Tensor %[[UNF]], %[[PROB_TENSOR]] : !torch.vtensor<[?,?],f64>, !torch.vtensor<[],f64> -> !torch.vtensor<[?,?],i1>
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_2:.*]] = torch.constant.bool false
// CHECK: %[[NONE_3:.*]] = torch.constant.none
// CHECK: %[[BOOL_MASK:.*]] = torch.aten.to.dtype %[[CMP]], %[[INT6]], %[[FALSE_2]], %[[FALSE_2]], %[[NONE_3]] :
// CHECK-SAME: !torch.vtensor<[?,?],i1>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f32>
// CHECK: %[[MASK_INP:.*]] = torch.aten.mul.Tensor %[[BOOL_MASK]], %[[INP]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[OUT:.*]] = torch.aten.div.Scalar %[[MASK_INP]], %[[ONEMINUSP]] : !torch.vtensor<[?,?],f32>, !torch.float -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.dropout$train(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%float3.000000e-01 = torch.constant.float 3.000000e-01
%true = torch.constant.bool true
%0 = torch.aten.dropout %arg0, %float3.000000e-01, %true : !torch.vtensor<[?,?],f32>, !torch.float, !torch.bool -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.zero(
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[ZERO:.*]] = torch.constant.int 0
// CHECK: %[[OUT:.*]] = torch.valsem.aten.fill.Scalar %[[INP]], %[[ZERO]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.zero(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%0 = torch.aten.zero %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.new_empty
// CHECK-SAME: %[[INP:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[2,3],f32> {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[SIZE:.*]] = torch.prim.ListConstruct %[[INT2]], %[[INT3]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[INT6:.*]] = torch.constant.int 6
// CHECK: %[[RES:.*]] = torch.aten.empty.memory_format %[[SIZE]], %[[INT6]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE_0]] : !torch.list<int>, !torch.int, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
// CHECK: return %[[RES]] : !torch.vtensor<[2,3],f32>
func.func @torch.aten.new_empty(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[2,3],f32> {
%none = torch.constant.none
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.new_empty %arg0, %0, %none, %none, %none, %none : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[2,3],f32>
return %1 : !torch.vtensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.where.Scalar(
// CHECK-SAME: %[[COND:.*]]: !torch.vtensor<[?,?,?],i1>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[CST8:.*]] = torch.constant.float 8.000000e+00
// CHECK: %[[CST4:.*]] = torch.constant.float 4.000000e+00
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[ALLOC:.*]] = torch.aten.empty.memory_format %[[LIST]], %none, %none, %none, %none, %none : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[FILL_SELF:.*]] = torch.valsem.aten.fill.Scalar %[[ALLOC]], %[[CST4]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
// CHECK: %[[LIST2:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE2:.*]] = torch.constant.none
// CHECK: %[[ALLOC2:.*]] = torch.aten.empty.memory_format %[[LIST2]], %none_0, %none_0, %none_0, %none_0, %none_0 : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[FILL_OTHER:.*]] = torch.valsem.aten.fill.Scalar %[[ALLOC2]], %[[CST8]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
// CHECK: %[[OUT:.*]] = torch.aten.where.self %[[COND]], %[[FILL_SELF]], %[[FILL_OTHER]] : !torch.vtensor<[?,?,?],i1>, !torch.vtensor<[],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten.where.Scalar(%arg0: !torch.vtensor<[?,?,?],i1>) -> !torch.vtensor<[?,?,?],f32> {
%cst8 = torch.constant.float 8.000000e+00
%cst4 = torch.constant.float 4.000000e+00
%0 = torch.aten.where.Scalar %arg0, %cst4, %cst8 : !torch.vtensor<[?,?,?],i1>, !torch.float, !torch.float -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.where.ScalarSelf(
// CHECK-SAME: %[[COND:.*]]: !torch.vtensor<[?,?,?],i1>, %[[OTHER:.*]]: !torch.vtensor<[?,?],f64>) -> !torch.vtensor<[?,?,?],f64> {
// CHECK: %[[CST:.*]] = torch.constant.float 4.000000e+00
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[ALLOC:.*]] = torch.aten.empty.memory_format %[[LIST]], %none, %none, %none, %none, %none : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[FILL:.*]] = torch.valsem.aten.fill.Scalar %[[ALLOC]], %[[CST]] : !torch.vtensor<[],f64>, !torch.float -> !torch.vtensor<[],f64>
// CHECK: %[[OUT:.*]] = torch.aten.where.self %[[COND]], %[[FILL]], %[[OTHER]] : !torch.vtensor<[?,?,?],i1>, !torch.vtensor<[],f64>, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?,?],f64>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?,?],f64>
func.func @torch.aten.where.ScalarSelf(%arg0: !torch.vtensor<[?,?,?],i1>, %arg1: !torch.vtensor<[?,?],f64>) -> !torch.vtensor<[?,?,?],f64> {
%cst = torch.constant.float 4.000000e+00
%0 = torch.aten.where.ScalarSelf %arg0, %cst, %arg1 : !torch.vtensor<[?,?,?],i1>, !torch.float, !torch.vtensor<[?,?],f64> -> !torch.vtensor<[?,?,?],f64>
return %0 : !torch.vtensor<[?,?,?],f64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.where.ScalarOther(
// CHECK-SAME: %[[COND:.*]]: !torch.vtensor<[?,?,?],i1>, %[[SELF:.*]]: !torch.vtensor<[?,?],f64>) -> !torch.vtensor<[?,?,?],f64> {
// CHECK: %[[CST:.*]] = torch.constant.float 4.000000e+00
// CHECK: %[[LIST:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[ALLOC:.*]] = torch.aten.empty.memory_format %[[LIST]], %none, %none, %none, %none, %none : !torch.list<int>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f64>
// CHECK: %[[FILL:.*]] = torch.valsem.aten.fill.Scalar %[[ALLOC]], %[[CST]] : !torch.vtensor<[],f64>, !torch.float -> !torch.vtensor<[],f64>
// CHECK: %[[OUT:.*]] = torch.aten.where.self %[[COND]], %[[SELF]], %[[FILL]] : !torch.vtensor<[?,?,?],i1>, !torch.vtensor<[?,?],f64>, !torch.vtensor<[],f64> -> !torch.vtensor<[?,?,?],f64>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?,?],f64>
func.func @torch.aten.where.ScalarOther(%arg0: !torch.vtensor<[?,?,?],i1>, %arg1: !torch.vtensor<[?,?],f64>) -> !torch.vtensor<[?,?,?],f64> {
%cst = torch.constant.float 4.000000e+00
%0 = torch.aten.where.ScalarOther %arg0, %arg1, %cst : !torch.vtensor<[?,?,?],i1>, !torch.vtensor<[?,?],f64>, !torch.float -> !torch.vtensor<[?,?,?],f64>
return %0 : !torch.vtensor<[?,?,?],f64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.pad
// CHECK-SAME: (%[[SELF:.*]]: !torch.vtensor<[?,?,?],f64>, %[[VALUE:.*]]: !torch.float) -> !torch.vtensor<[?,?,?],f64> {
// CHECK-NOT: torch.aten.pad
// CHECK: %[[STRING:.*]] = torch.constant.str "constant"
// CHECK-NEXT: %[[LIST:.*]] = torch.prim.ListConstruct
// CHECK-NEXT: %[[PAD_ND:.*]] = torch.aten.constant_pad_nd %[[SELF]], %[[LIST]], %[[VALUE]]
// CHECK-NEXT: return %[[PAD_ND]]
func.func @torch.aten.pad(%arg0: !torch.vtensor<[?,?,?],f64>, %arg1: !torch.float) -> !torch.vtensor<[?,?,?],f64> {
%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%str = torch.constant.str "constant"
%0 = torch.prim.ListConstruct %int0, %int1, %int2, %int3 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.pad %arg0, %0, %str, %arg1 : !torch.vtensor<[?,?,?],f64>, !torch.list<int>, !torch.str, !torch.float -> !torch.vtensor<[?,?,?],f64>
return %1 : !torch.vtensor<[?,?,?],f64>
}
// -----
// CHECK-LABEL: func.func @torch.aten.to.dtype_layout(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f64> {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[OUT:.*]] = torch.aten.to.dtype %[[SELF]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f64>
func.func @torch.aten.to.dtype_layout(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f64> {
%none = torch.constant.none
%false = torch.constant.bool false
%int0 = torch.constant.int 0
%int7 = torch.constant.int 7
%0 = torch.aten.to.dtype_layout %arg0, %int7, %int0, %none, %none, %false, %false, %none : !torch.vtensor<[?,?],f32>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f64>
return %0 : !torch.vtensor<[?,?],f64>
}
// -----
// CHECK-LABEL: func @torch.aten.adaptive_avg_pool2d(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[OUTPUT_SIZE:.*]] = torch.prim.ListConstruct %[[CST7]], %[[CST7]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[SELF]], %[[CST2]] : !torch.vtensor<[?,?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[CST3:.*]] = torch.constant.int 3
// CHECK: %[[DIM3:.*]] = torch.aten.size.int %[[SELF]], %[[CST3]] : !torch.vtensor<[?,?,?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[COND1:.*]] = torch.aten.eq.int %[[DIM2]], %[[CST7]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[COND1]], "unimplemented: only support cases where input and output size are equal for non-unit output size"
// CHECK: %[[T1:.*]] = torch.aten.sub.int %[[CST7]], %[[CST1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[T2:.*]] = torch.aten.sub.int %[[DIM2]], %[[T1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[COND2:.*]] = torch.aten.eq.int %[[DIM3]], %[[CST7]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[COND2]], "unimplemented: only support cases where input and output size are equal for non-unit output size"
// CHECK: %[[T3:.*]] = torch.aten.sub.int %[[CST7]], %[[CST1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[T4:.*]] = torch.aten.sub.int %[[DIM3]], %[[T3]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[T5:.*]] = torch.prim.ListConstruct %[[T2]], %[[T4]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T6:.*]] = torch.prim.ListConstruct %[[CST1]], %[[CST1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T7:.*]] = torch.prim.ListConstruct %[[CST0]], %[[CST0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUT:.*]] = torch.aten.avg_pool2d %[[SELF]], %[[T5]], %[[T6]], %[[T7]], %[[FALSE]], %[[TRUE]], %[[NONE]] : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?,?,?],f32>
func.func @torch.aten.adaptive_avg_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
%int7 = torch.constant.int 7
%output_size = torch.prim.ListConstruct %int7, %int7 : (!torch.int, !torch.int) -> !torch.list<int>
%0 = torch.aten.adaptive_avg_pool2d %arg0, %output_size : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.clamp_min(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[MIN:.*]] = torch.constant.int -2
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[OUT:.*]] = torch.aten.clamp %[[SELF]], %[[MIN]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.int, !torch.none -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.clamp_min(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%min = torch.constant.int -2
%0 = torch.aten.clamp_min %arg0, %min : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.clamp_max(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[MAX:.*]] = torch.constant.int 7
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[OUT:.*]] = torch.aten.clamp %[[SELF]], %[[NONE]], %[[MAX]] : !torch.vtensor<[?,?],f32>, !torch.none, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.clamp_max(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%max = torch.constant.int 7
%0 = torch.aten.clamp_max %arg0, %max : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func @torch.aten.baddbmm(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?,?],f32>, %[[BATCH1:.*]]: !torch.vtensor<[?,?,?],f32>,
// CHECK-SAME: %[[BATCH2:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[BMM:.*]] = torch.aten.bmm %[[BATCH1]], %[[BATCH2]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[MUL:.*]] = torch.aten.mul.Scalar %[[BMM]], %[[CST1]] : !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[OUT:.*]] = torch.aten.add.Tensor %[[MUL]], %[[SELF]], %[[CST1]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32>, !torch.int -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten.baddbmm(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?],f32>, %arg2: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> {
%int1 = torch.constant.int 1
%0 = torch.aten.baddbmm %arg0, %arg1, %arg2, %int1, %int1 : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],f32>, !torch.int , !torch.int -> !torch.vtensor<[?,?,?],f32>
return %0 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func @torch.aten.floor_divide(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>,
// CHECK-SAME: %[[OTHER:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[CSTTRUNC:.*]] = torch.constant.str "trunc"
// CHECK: %[[OUT:.*]] = torch.aten.div.Tensor_mode %[[SELF]], %[[OTHER]], %[[CSTTRUNC]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.str -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.floor_divide(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%0 = torch.aten.floor_divide %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func @torch.aten.numpy_T$rank_two(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[5,4],f32>) -> !torch.vtensor<[4,5],f32> {
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST1]], %[[CST0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUT:.*]] = torch.aten.permute %[[SELF]], %[[DIMS]] : !torch.vtensor<[5,4],f32>, !torch.list<int> -> !torch.vtensor<[4,5],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[4,5],f32>
func.func @torch.aten.numpy_T$rank_two(%arg0: !torch.vtensor<[5,4],f32>) -> !torch.vtensor<[4,5],f32> {
%0 = torch.aten.numpy_T %arg0 : !torch.vtensor<[5,4],f32> -> !torch.vtensor<[4,5],f32>
return %0 : !torch.vtensor<[4,5],f32>
}
// -----
// CHECK-LABEL: func @torch.aten.numpy_T$rank_three(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[5,4,3],f32>) -> !torch.vtensor<[3,4,5],f32> {
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[CST0:.*]] = torch.constant.int 0
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST2]], %[[CST1]], %[[CST0]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUT:.*]] = torch.aten.permute %[[SELF]], %[[DIMS]] : !torch.vtensor<[5,4,3],f32>, !torch.list<int> -> !torch.vtensor<[3,4,5],f32>
// CHECK: return %[[OUT]] : !torch.vtensor<[3,4,5],f32>
func.func @torch.aten.numpy_T$rank_three(%arg0: !torch.vtensor<[5,4,3],f32>) -> !torch.vtensor<[3,4,5],f32> {
%0 = torch.aten.numpy_T %arg0 : !torch.vtensor<[5,4,3],f32> -> !torch.vtensor<[3,4,5],f32>
return %0 : !torch.vtensor<[3,4,5],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.repeat(
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.int, %[[ARG2:.*]]: !torch.int, %[[ARG3:.*]]: !torch.int) -> !torch.vtensor<[?,?,?],f32> {
// CHECK: %[[T0:.*]] = torch.prim.ListConstruct %[[ARG1]], %[[ARG2]], %[[ARG3]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[INT1:.*]] = torch.constant.int 1
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[T1:.*]] = torch.aten.size.int %[[ARG0]], %[[INT0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[T2:.*]] = torch.aten.mul.int %[[T1]], %[[ARG2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[INT1_0:.*]] = torch.constant.int 1
// CHECK: %[[T3:.*]] = torch.aten.size.int %[[ARG0]], %[[INT1_0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[T4:.*]] = torch.aten.mul.int %[[T3]], %[[ARG3]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[T5:.*]] = torch.prim.ListConstruct %[[INT1]], %[[INT1]], %[[T1]], %[[INT1]], %[[T3]] : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T6:.*]] = torch.prim.ListConstruct %[[ARG1]], %[[ARG2]], %[[T1]], %[[ARG3]], %[[T3]] : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T7:.*]] = torch.prim.ListConstruct %[[ARG1]], %[[T2]], %[[T4]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T8:.*]] = torch.aten.view %[[ARG0]], %[[T5]] : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[1,1,?,1,?],f32>
// CHECK: %[[T9:.*]] = torch.aten.broadcast_to %[[T8]], %[[T6]] : !torch.vtensor<[1,1,?,1,?],f32>, !torch.list<int> -> !torch.vtensor<[?,?,?,?,?],f32>
// CHECK: %[[T10:.*]] = torch.aten.view %[[T9]], %[[T7]] : !torch.vtensor<[?,?,?,?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,?,?],f32>
// CHECK: return %[[T10]] : !torch.vtensor<[?,?,?],f32>
func.func @torch.aten.repeat(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int) -> !torch.vtensor<[?,?,?],f32> {
%1 = torch.prim.ListConstruct %arg1, %arg2, %arg3: (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%2 = torch.aten.repeat %arg0, %1 : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,?,?],f32>
return %2 : !torch.vtensor<[?,?,?],f32>
}
// -----
// CHECK-LABEL: func @torch.aten.select_scatter
// CHECK-SAME: (%[[SELF:.*]]: !torch.vtensor<[?,?],f32>, %[[SRC:.*]]: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK-NEXT: %[[START:.*]] = torch.constant.int 0
// CHECK-NEXT: %[[DIM:.*]] = torch.constant.int 1
// CHECK-NEXT: %[[STEP:.*]] = torch.constant.int 1
// CHECK-NEXT: %[[END:.*]] = torch.aten.add.int %[[START]], %[[STEP]]
// CHECK-NEXT: %[[UNSQUEEZE_SRC:.*]] = torch.aten.unsqueeze %[[SRC]], %[[DIM]]
// CHECK-NEXT: %[[SLICE_SCATTER:.*]] = torch.aten.slice_scatter %[[SELF]], %[[UNSQUEEZE_SRC]], %[[DIM]], %[[START]], %[[END]], %[[STEP]]
// CHECK-NEXT: return %[[SLICE_SCATTER]]
// CHECK-NEXT: }
func.func @torch.aten.select_scatter(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?,?],f32> {
%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%0 = torch.aten.select_scatter %arg0, %arg1, %int1, %int0 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.var.dim(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[3,4,7],f32>) -> !torch.vtensor<[3,4,1],f32> {
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST2]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool false
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool true
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[3,4,7],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[KEEPDIM_0:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[KEEPDIM_0]], %[[NONE_0]] : !torch.vtensor<[3,4,7],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST2]] : !torch.vtensor<[3,4,7],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[CST1]], %[[DIM2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[3,4,7],f64>, !torch.vtensor<[3,4,1],f64>, !torch.float -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[3,4,7],f64>, !torch.vtensor<[3,4,7],f64> -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[NONE_0]] : !torch.vtensor<[3,4,7],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM2_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST2]] : !torch.vtensor<[3,4,7],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM2_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_RESULT:.*]] = torch.aten.to.dtype %[[VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_1]] : !torch.vtensor<[3,4,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f32>
// CHECK: return %[[DOWNCAST_RESULT]] : !torch.vtensor<[3,4,1],f32>
func.func @torch.aten.var.dim(%arg0: !torch.vtensor<[3,4,7],f32>) -> !torch.vtensor<[3,4,1],f32> {
%int2 = torch.constant.int 2
%dims = torch.prim.ListConstruct %int2 : (!torch.int) -> !torch.list<int>
%unbiased = torch.constant.bool false
%keepdim = torch.constant.bool true
%0 = torch.aten.var.dim %arg0, %dims, %unbiased, %keepdim: !torch.vtensor<[3,4,7],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[3,4,1],f32>
return %0 : !torch.vtensor<[3,4,1],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.softplus(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.tensor<[2,3],f32>,
// CHECK-SAME: %[[VAL_1:.*]]: !torch.int) -> !torch.tensor<[2,3],f32> {
// CHECK: %[[VAL_2:.*]] = torch.constant.int 0
// CHECK: %[[VAL_3:.*]] = torch.aten.mul.Scalar %[[VAL_0]], %[[VAL_1]] : !torch.tensor<[2,3],f32>, !torch.int -> !torch.tensor<[2,3],f32>
// CHECK: %[[VAL_4:.*]] = torch.aten.exp %[[VAL_3]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[VAL_5:.*]] = torch.aten.log1p %[[VAL_4]] : !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
// CHECK: %[[VAL_6:.*]] = torch.aten.div.Scalar %[[VAL_5]], %[[VAL_1]] : !torch.tensor<[2,3],f32>, !torch.int -> !torch.tensor<[2,3],f32>
// CHECK: %[[VAL_7:.*]] = torch.aten.gt.Scalar %[[VAL_3]], %[[VAL_2]] : !torch.tensor<[2,3],f32>, !torch.int -> !torch.tensor<[2,3],i1>
// CHECK: %[[VAL_8:.*]] = torch.aten.where.self %[[VAL_7]], %[[VAL_0]], %[[VAL_6]] : !torch.tensor<[2,3],i1>, !torch.tensor<[2,3],f32>, !torch.tensor<[2,3],f32> -> !torch.tensor<[2,3],f32>
// CHECK: return %[[VAL_8]] : !torch.tensor<[2,3],f32>
// CHECK: }
func.func @torch.aten.softplus(%t: !torch.tensor<[2,3],f32>, %dim: !torch.int) -> !torch.tensor<[2,3],f32> {
%int0 = torch.constant.int 0
%ret = torch.aten.softplus %t, %dim, %int0: !torch.tensor<[2,3],f32>, !torch.int, !torch.int -> !torch.tensor<[2,3],f32>
return %ret : !torch.tensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.var.correction(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[3,4,7],f32>) -> !torch.vtensor<[3,4,1],f32> {
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST2]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool true
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[3,4,7],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[KEEPDIM_0:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[KEEPDIM_0]], %[[NONE_0]] : !torch.vtensor<[3,4,7],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST2]] : !torch.vtensor<[3,4,7],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[CST1]], %[[DIM2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[3,4,7],f64>, !torch.vtensor<[3,4,1],f64>, !torch.float -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[3,4,7],f64>, !torch.vtensor<[3,4,7],f64> -> !torch.vtensor<[3,4,7],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[NONE_0]] : !torch.vtensor<[3,4,7],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM2_0:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST2]] : !torch.vtensor<[3,4,7],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM2_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[CST2_0:.*]] = torch.constant.int 2
// CHECK: %[[NUM_ELEMENTS_PLUS_ONE:.*]] = torch.aten.add.int %[[NUM_ELEMENTS_0]], %[[CST1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[PRED:.*]] = torch.aten.ge.int %[[NUM_ELEMENTS_PLUS_ONE]], %[[CST2_0]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[PRED]], "correction value should be less than or equal to productDimSize + 1"
// CHECK: %[[NUM_ELEMENTS_MINUS_CORRECTION:.*]] = torch.aten.sub.int %[[NUM_ELEMENTS_0]], %[[CST2_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_MINUS_CORRECTION]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_RESULT:.*]] = torch.aten.to.dtype %[[VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_1]] : !torch.vtensor<[3,4,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f32>
// CHECK: return %[[DOWNCAST_RESULT]] : !torch.vtensor<[3,4,1],f32>
func.func @torch.aten.var.correction(%arg0: !torch.vtensor<[3,4,7],f32>) -> !torch.vtensor<[3,4,1],f32> {
%int2 = torch.constant.int 2
%dims = torch.prim.ListConstruct %int2 : (!torch.int) -> !torch.list<int>
%keepdim = torch.constant.bool true
%0 = torch.aten.var.correction %arg0, %dims, %int2, %keepdim: !torch.vtensor<[3,4,7],f32>, !torch.list<int>, !torch.int, !torch.bool -> !torch.vtensor<[3,4,1],f32>
return %0 : !torch.vtensor<[3,4,1],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.std.dim(
// CHECK-SAME: %[[INPUT:.*]]: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,1],f32> {
// CHECK: %[[CST2:.*]] = torch.constant.int 2
// CHECK: %[[DIMS:.*]] = torch.prim.ListConstruct %[[CST2]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[UNBIASED:.*]] = torch.constant.bool false
// CHECK: %[[KEEPDIM:.*]] = torch.constant.bool true
// CHECK: %[[CST7:.*]] = torch.constant.int 7
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[UPCAST_INPUT:.*]] = torch.aten.to.dtype %[[INPUT]], %[[CST7]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[3,4,5],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,5],f64>
// CHECK: %[[NONE_0:.*]] = torch.constant.none
// CHECK: %[[KEEPDIM_0:.*]] = torch.constant.bool true
// CHECK: %[[SUM:.*]] = torch.aten.sum.dim_IntList %[[UPCAST_INPUT]], %[[DIMS]], %[[KEEPDIM_0]], %[[NONE_0]] : !torch.vtensor<[3,4,5],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1:.*]] = torch.constant.int 1
// CHECK: %[[DIM2:.*]] = torch.aten.size.int %[[UPCAST_INPUT]], %[[CST2]] : !torch.vtensor<[3,4,5],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS:.*]] = torch.aten.mul.int %[[CST1]], %[[DIM2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[MEAN:.*]] = torch.aten.div.Scalar %[[SUM]], %[[NUM_ELEMENTS]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB_MEAN:.*]] = torch.aten.sub.Tensor %[[UPCAST_INPUT]], %[[MEAN]], %[[ALPHA]] : !torch.vtensor<[3,4,5],f64>, !torch.vtensor<[3,4,1],f64>, !torch.float -> !torch.vtensor<[3,4,5],f64>
// CHECK: %[[SUB_MEAN_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB_MEAN]], %[[SUB_MEAN]] : !torch.vtensor<[3,4,5],f64>, !torch.vtensor<[3,4,5],f64> -> !torch.vtensor<[3,4,5],f64>
// CHECK: %[[SUB_MEAN_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_MEAN_SQUARE]], %[[DIMS]], %[[KEEPDIM]], %[[NONE_0]] : !torch.vtensor<[3,4,5],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST1_0:.*]] = torch.constant.int 1
// CHECK: %[[DIM2_0:.*]] = torch.aten.size.int %[[SUB_MEAN_SQUARE]], %[[CST2]] : !torch.vtensor<[3,4,5],f64>, !torch.int -> !torch.int
// CHECK: %[[NUM_ELEMENTS_0:.*]] = torch.aten.mul.int %[[CST1_0]], %[[DIM2_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[VAR:.*]] = torch.aten.div.Scalar %[[SUB_MEAN_SQUARE_SUM]], %[[NUM_ELEMENTS_0]] : !torch.vtensor<[3,4,1],f64>, !torch.int -> !torch.vtensor<[3,4,1],f64>
// CHECK: %[[CST6:.*]] = torch.constant.int 6
// CHECK: %[[FALSE_0:.*]] = torch.constant.bool false
// CHECK: %[[NONE_1:.*]] = torch.constant.none
// CHECK: %[[DOWNCAST_RESULT:.*]] = torch.aten.to.dtype %[[VAR]], %[[CST6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_1]] : !torch.vtensor<[3,4,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,4,1],f32>
// CHECK: %[[STD:.*]] = torch.aten.sqrt %[[DOWNCAST_RESULT]] : !torch.vtensor<[3,4,1],f32> -> !torch.vtensor<[3,4,1],f32>
// CHECK: return %[[STD]] : !torch.vtensor<[3,4,1],f32>
func.func @torch.aten.std.dim(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,1],f32> {
%int2 = torch.constant.int 2
%dims = torch.prim.ListConstruct %int2 : (!torch.int) -> !torch.list<int>
%unbiased = torch.constant.bool false
%keepdim = torch.constant.bool true
%0 = torch.aten.std.dim %arg0, %dims, %unbiased, %keepdim: !torch.vtensor<[3,4,5],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[3,4,1],f32>
return %0 : !torch.vtensor<[3,4,1],f32>
}