mirror of https://github.com/llvm/torch-mlir
87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
"""Various configuration helpers for testing."""
|
||
|
|
||
|
import ast
|
||
|
import functools
|
||
|
|
||
|
from ..utils import logging
|
||
|
from .frontend import *
|
||
|
from .interfaces import *
|
||
|
from .partial_eval_base import *
|
||
|
from .target import *
|
||
|
from .value_coder_base import *
|
||
|
from .extensions import numpy as npc
|
||
|
|
||
|
|
||
|
def create_import_dump_decorator(*,
|
||
|
target_factory: TargetFactory = GenericTarget64
|
||
|
):
|
||
|
config = create_test_config(target_factory=target_factory)
|
||
|
logging.debug("Testing with config: {}", config)
|
||
|
|
||
|
def do_import(f):
|
||
|
fe = ImportFrontend(config=config)
|
||
|
fe.import_global_function(f)
|
||
|
print("// -----")
|
||
|
print(fe.ir_module.to_asm())
|
||
|
return f
|
||
|
|
||
|
def decorator(*args, expect_error=None):
|
||
|
if len(args) == 0:
|
||
|
# Higher order decorator.
|
||
|
return functools.partial(decorator, expect_error=expect_error)
|
||
|
|
||
|
assert len(args) == 1
|
||
|
try:
|
||
|
return do_import(f=args[0])
|
||
|
except EmittedError as e:
|
||
|
if expect_error and e.message == expect_error:
|
||
|
print("// EXPECTED_ERROR:", repr(e.message))
|
||
|
pass
|
||
|
elif expect_error:
|
||
|
print("// MISMATCHED_ERROR:", repr(e.message))
|
||
|
raise AssertionError("Expected error '{}' but got '{}'".format(
|
||
|
expect_error, e.message))
|
||
|
else:
|
||
|
print("// UNEXPECTED_ERROR:", repr(e.message))
|
||
|
raise e
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
def create_test_config(target_factory: TargetFactory = GenericTarget64):
|
||
|
value_coder = ValueCoderChain([
|
||
|
BuiltinsValueCoder(),
|
||
|
npc.CreateNumpyValueCoder(),
|
||
|
])
|
||
|
pe_hook = build_default_partial_eval_hook()
|
||
|
|
||
|
# Populate numpy partial evaluators.
|
||
|
npc.bind_ufuncs(npc.get_ufuncs_from_module(), pe_hook)
|
||
|
|
||
|
if logging.debug_enabled:
|
||
|
logging.debug("Partial eval mapping: {}", pe_hook)
|
||
|
|
||
|
return Configuration(target_factory=target_factory,
|
||
|
value_coder=value_coder,
|
||
|
partial_eval_hook=pe_hook)
|
||
|
|
||
|
|
||
|
def build_default_partial_eval_hook() -> PartialEvalHook:
|
||
|
pe = MappedPartialEvalHook()
|
||
|
### Modules
|
||
|
pe.enable_getattr(for_type=ast.__class__) # The module we use is arbitrary.
|
||
|
|
||
|
### Tuples
|
||
|
# Enable attribute resolution on tuple, which includes namedtuple (which is
|
||
|
# really what we want).
|
||
|
pe.enable_getattr(for_type=tuple)
|
||
|
|
||
|
### Temp: resolve a function to a template call for testing
|
||
|
import math
|
||
|
pe.enable_template_call("__global$math.ceil", for_ref=math.ceil)
|
||
|
pe.enable_template_call("__global$math.isclose", for_ref=math.isclose)
|
||
|
return pe
|