2024-03-27 03:41:40 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
2024-04-03 07:19:57 +08:00
|
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
|
|
#include "mlir/IR/PatternMatch.h"
|
2024-03-27 03:41:40 +08:00
|
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
|
|
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
using namespace mlir::torch;
|
|
|
|
using namespace mlir::torch::Torch;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
2024-04-03 07:19:57 +08:00
|
|
|
LogicalResult materializeFolds(ImplicitLocOpBuilder b,
|
|
|
|
ArrayRef<OpFoldResult> fold,
|
|
|
|
SmallVector<Value> &values) {
|
|
|
|
for (auto f : fold) {
|
|
|
|
if (auto val = dyn_cast<Value>(f)) {
|
|
|
|
values.push_back(val);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto attr = dyn_cast<Attribute>(f)) {
|
|
|
|
if (auto val = dyn_cast<FloatAttr>(attr)) {
|
|
|
|
values.push_back(b.create<Torch::ConstantFloatOp>(
|
|
|
|
b.getType<Torch::FloatType>(), val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (auto val = dyn_cast<IntegerAttr>(attr)) {
|
|
|
|
values.push_back(
|
|
|
|
b.create<Torch::ConstantIntOp>(b.getType<Torch::IntType>(), val));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
LogicalResult getListOperands(Value value, SmallVector<Value> &vals) {
|
|
|
|
auto list = value.getDefiningOp<Torch::PrimListConstructOp>();
|
|
|
|
if (!list)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
for (auto operand : list.getOperands())
|
|
|
|
vals.push_back(operand);
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
2024-10-12 00:15:17 +08:00
|
|
|
LogicalResult constructListFromLiteral(PatternRewriter &rewriter,
|
|
|
|
ValueTensorLiteralOp literalOp,
|
|
|
|
SmallVector<Value> &vals) {
|
|
|
|
// only supports splat ValueTensorLiterals for now. TODO: add support for
|
|
|
|
// small non-splat valuetensorliterals.
|
|
|
|
auto ty = dyn_cast<ValueTensorType>(literalOp.getType());
|
|
|
|
if (!ty || !ty.hasSizes())
|
|
|
|
return failure();
|
|
|
|
auto attr = dyn_cast_or_null<SplatElementsAttr>(literalOp.getValue());
|
|
|
|
if (!attr)
|
|
|
|
return failure();
|
|
|
|
auto attrInt = dyn_cast<IntegerAttr>(attr.getSplatValue<Attribute>());
|
|
|
|
if (!attrInt)
|
|
|
|
return failure();
|
|
|
|
IntegerType intty = cast<IntegerType>(attrInt.getType());
|
|
|
|
if (!intty.isSignedInteger())
|
|
|
|
return failure();
|
|
|
|
Value materializedVal = rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
literalOp.getLoc(), attrInt.getSInt());
|
|
|
|
vals.resize(vals.size() + ty.getSizes()[0], materializedVal);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
LogicalResult getListFromTensor(Value value, SmallVector<Value> &vals) {
|
2024-04-03 07:19:57 +08:00
|
|
|
constexpr int64_t kMaxFold = 16;
|
|
|
|
if (auto tensor = value.getDefiningOp<Torch::AtenTensorOp>())
|
|
|
|
return getListOperands(tensor.getData(), vals);
|
|
|
|
|
|
|
|
if (auto full = value.getDefiningOp<Torch::AtenFullOp>()) {
|
|
|
|
auto ty = cast<ValueTensorType>(full.getType());
|
|
|
|
if (!ty.areAllSizesKnown() || ty.getSizes().size() != 1)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (ty.getSizes()[0] > kMaxFold)
|
|
|
|
return failure();
|
2024-03-27 03:41:40 +08:00
|
|
|
|
2024-04-03 07:19:57 +08:00
|
|
|
vals.resize(vals.size() + ty.getSizes()[0], full.getFillValue());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
return failure();
|
2024-03-27 03:41:40 +08:00
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class PropagateAtenShapeToTensorPattern
|
|
|
|
: public OpRewritePattern<Aten_ShapeAsTensorOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<Aten_ShapeAsTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(Aten_ShapeAsTensorOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto loc = op.getLoc();
|
|
|
|
auto self = op.getSelf();
|
|
|
|
auto selfTy = cast<BaseTensorType>(self.getType());
|
|
|
|
if (!selfTy.hasSizes())
|
|
|
|
return rewriter.notifyMatchFailure(op, "self has unknown rank");
|
|
|
|
|
|
|
|
int64_t rank = selfTy.getSizes().size();
|
|
|
|
SmallVector<Value> dims;
|
|
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
|
|
auto iv = rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
|
|
dims.push_back(rewriter.create<Torch::AtenSizeIntOp>(
|
|
|
|
loc, rewriter.getType<Torch::IntType>(), self, iv));
|
|
|
|
}
|
|
|
|
|
|
|
|
auto dimList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
loc,
|
|
|
|
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
|
|
|
|
dims);
|
|
|
|
|
|
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
|
|
loc, rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), dimList, cstNone, cstNone, cstFalse);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-04-03 07:19:57 +08:00
|
|
|
namespace {
|
|
|
|
class PropagateAtenCatPattern : public OpRewritePattern<AtenCatOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenCatOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenCatOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto loc = op.getLoc();
|
|
|
|
ImplicitLocOpBuilder b(loc, rewriter);
|
|
|
|
constexpr int64_t kMaxFold = 16;
|
|
|
|
|
|
|
|
auto resultTy = dyn_cast<ValueTensorType>(op.getType());
|
|
|
|
if (!resultTy.hasSizes() || resultTy.getSizes().size() != 1 ||
|
|
|
|
!resultTy.areAllSizesKnown())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (resultTy.getSizes().front() > kMaxFold)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (!resultTy.hasDtype())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
SmallVector<Value> tensors;
|
|
|
|
if (failed(getListOperands(op.getTensors(), tensors)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
SmallVector<OpFoldResult> scalars;
|
|
|
|
for (auto element : tensors) {
|
|
|
|
llvm::SmallVector<Value> delisted;
|
|
|
|
if (succeeded(getListFromTensor(element, delisted))) {
|
|
|
|
for (auto scalar : delisted)
|
|
|
|
scalars.push_back(scalar);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
DenseElementsAttr attr;
|
|
|
|
if (matchPattern(element, m_Constant(&attr))) {
|
|
|
|
if (attr.isSplat()) {
|
|
|
|
scalars.resize(scalars.size() + attr.getNumElements(),
|
|
|
|
attr.getSplatValue<Attribute>());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto e : attr.getValues<Attribute>()) {
|
|
|
|
scalars.push_back(e);
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
return rewriter.notifyMatchFailure(op, "unknown op fold type");
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &scalar : scalars) {
|
|
|
|
if (auto attr = dyn_cast<Attribute>(scalar)) {
|
|
|
|
if (auto iattr = dyn_cast<IntegerAttr>(attr)) {
|
|
|
|
auto i64 = iattr.getValue().getSExtValue();
|
|
|
|
scalar = rewriter.getI64IntegerAttr(i64);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SmallVector<Value> values;
|
|
|
|
if (failed(materializeFolds(b, scalars, values)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "unable to materialize constants");
|
|
|
|
|
|
|
|
Type eTy = b.getType<Torch::FloatType>();
|
|
|
|
if (isa<mlir::IntegerType>(resultTy.getDtype()))
|
|
|
|
eTy = rewriter.getType<Torch::IntType>();
|
|
|
|
|
|
|
|
auto elementsList = b.create<Torch::PrimListConstructOp>(
|
|
|
|
rewriter.getType<Torch::ListType>(eTy), values);
|
|
|
|
|
|
|
|
Value cstNone = b.create<Torch::ConstantNoneOp>();
|
|
|
|
Value cstFalse =
|
|
|
|
b.create<Torch::ConstantBoolOp>(rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), elementsList, cstNone, cstNone, cstFalse);
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
namespace {
|
|
|
|
class PropagateAtenIndexSelectPattern
|
|
|
|
: public OpRewritePattern<AtenIndexSelectOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenIndexSelectOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenIndexSelectOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto loc = op.getLoc();
|
2024-04-03 07:19:57 +08:00
|
|
|
ImplicitLocOpBuilder b(loc, rewriter);
|
2024-03-27 03:41:40 +08:00
|
|
|
|
|
|
|
SmallVector<Value> elements;
|
|
|
|
if (failed(getListFromTensor(op.getSelf(), elements)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
int64_t dim;
|
|
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant dim");
|
|
|
|
|
|
|
|
DenseElementsAttr idx;
|
|
|
|
if (!matchPattern(op.getIndex(), m_Constant(&idx)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant index");
|
|
|
|
|
|
|
|
auto selfTy = cast<BaseTensorType>(op.getSelf().getType());
|
|
|
|
if (!selfTy.hasSizes())
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires known rank");
|
|
|
|
|
|
|
|
auto selfShape = selfTy.getSizes();
|
|
|
|
int64_t selfRank = selfShape.size();
|
|
|
|
dim = dim < 0 ? dim + selfRank : dim;
|
|
|
|
int64_t dimLength = elements.size();
|
|
|
|
if (selfShape[dim] != dimLength)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "dim length does not match number of elements");
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < selfRank; ++i) {
|
|
|
|
if (i == dim)
|
|
|
|
continue;
|
|
|
|
if (selfShape[i] != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
"expects unary non-dim dimension");
|
|
|
|
}
|
|
|
|
|
|
|
|
SmallVector<Value> selected;
|
|
|
|
if (idx.isSplat()) {
|
|
|
|
int64_t indexInt = idx.getSplatValue<APInt>().getSExtValue();
|
|
|
|
indexInt = indexInt < 0 ? indexInt + dimLength : indexInt;
|
|
|
|
selected.resize(idx.getNumElements(), elements[indexInt]);
|
|
|
|
} else {
|
|
|
|
for (APInt val : idx.getValues<APInt>()) {
|
|
|
|
int64_t indexInt = val.getSExtValue();
|
|
|
|
selected.push_back(elements[indexInt]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto eTy = elements.front().getType();
|
|
|
|
|
|
|
|
auto dimList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
loc, rewriter.getType<Torch::ListType>(eTy), selected);
|
|
|
|
|
|
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
|
|
loc, rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), dimList, cstNone, cstNone, cstFalse);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
// Conversion attempts to handle some common propagatable slice cases, namely
|
|
|
|
// splatted values, no-op slices, known list of values, or any case where a
|
|
|
|
// new construction can be generated from a previous set of scalars allowing
|
|
|
|
// the parent tensor to be bypassed.
|
|
|
|
class PropagateAtenSliceTensorPattern
|
|
|
|
: public OpRewritePattern<AtenSliceTensorOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenSliceTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenSliceTensorOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto loc = op.getLoc();
|
2024-04-03 07:19:57 +08:00
|
|
|
ImplicitLocOpBuilder b(loc, rewriter);
|
2024-03-27 03:41:40 +08:00
|
|
|
|
|
|
|
SmallVector<Value> elements;
|
|
|
|
if (failed(getListFromTensor(op.getSelf(), elements)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
int64_t dim, start, end, step;
|
|
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant dim");
|
|
|
|
|
|
|
|
if (!matchPattern(op.getStart(), m_TorchConstantInt(&start)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant start");
|
|
|
|
|
|
|
|
if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant end");
|
|
|
|
|
|
|
|
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step)))
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a constant step");
|
|
|
|
|
|
|
|
if (step < 0)
|
|
|
|
return rewriter.notifyMatchFailure(op, "requires a positive step value");
|
|
|
|
|
|
|
|
auto selfTy = cast<BaseTensorType>(op.getSelf().getType());
|
|
|
|
auto selfShape = selfTy.getSizes();
|
|
|
|
int64_t selfRank = selfShape.size();
|
|
|
|
|
|
|
|
// Correct for negative indexing:
|
|
|
|
dim = dim < 0 ? dim + selfRank : dim;
|
|
|
|
|
|
|
|
int64_t dimLength = elements.size();
|
|
|
|
start = start < 0 ? start + dimLength : start;
|
|
|
|
end = end < 0 ? end + dimLength : end;
|
|
|
|
|
|
|
|
start = start < 0 ? 0 : start;
|
|
|
|
end = end < 0 ? 0 : end;
|
|
|
|
end = end > dimLength ? dimLength : end;
|
|
|
|
|
|
|
|
if (selfShape[dim] != dimLength)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "dim length does not match number of elements");
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < selfRank; ++i) {
|
|
|
|
if (i == dim)
|
|
|
|
continue;
|
|
|
|
if (selfShape[i] != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
"expects unary non-dim dimension");
|
|
|
|
}
|
|
|
|
|
|
|
|
SmallVector<Value> selected;
|
|
|
|
for (int i = start; i < end; i += step)
|
|
|
|
selected.push_back(elements[i]);
|
|
|
|
|
|
|
|
auto eTy = elements.front().getType();
|
|
|
|
auto dimList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
loc, rewriter.getType<Torch::ListType>(eTy), selected);
|
|
|
|
|
|
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
|
|
loc, rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), dimList, cstNone, cstNone, cstFalse);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-10-12 00:15:17 +08:00
|
|
|
namespace {
|
|
|
|
class PropagateAtenWhereSelfPattern : public OpRewritePattern<AtenWhereSelfOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenWhereSelfOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenWhereSelfOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value condition = op.getCondition();
|
|
|
|
Value self = op.getSelf();
|
|
|
|
Value other = op.getOther();
|
|
|
|
auto conditionTy = dyn_cast<Torch::ValueTensorType>(condition.getType());
|
|
|
|
if (!conditionTy || !conditionTy.hasSizes() ||
|
|
|
|
conditionTy.getSizes().size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "bad condition type");
|
|
|
|
auto selfTy = dyn_cast<Torch::ValueTensorType>(self.getType());
|
|
|
|
if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "bad self type");
|
|
|
|
auto otherTy = dyn_cast<Torch::ValueTensorType>(other.getType());
|
|
|
|
if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "bad other type");
|
|
|
|
int64_t conditionSize = selfTy.getSizes()[0];
|
|
|
|
int64_t selfSize = selfTy.getSizes()[0];
|
|
|
|
int64_t otherSize = otherTy.getSizes()[0];
|
|
|
|
|
|
|
|
if (selfSize != otherSize || selfSize != conditionSize)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op,
|
|
|
|
"unimplemented: support for propogating with implicit broadcasting.");
|
|
|
|
|
|
|
|
constexpr int64_t kMaxFold = 16;
|
|
|
|
if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold)
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
"arguments are dynamic or too big");
|
|
|
|
|
|
|
|
SmallVector<Value> conditionList, selfList, otherList;
|
|
|
|
if (failed(getListFromTensor(condition, conditionList)) ||
|
|
|
|
(int64_t)conditionList.size() != conditionSize)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
// If one of these tensors is a value tensor literal op, we will need to
|
|
|
|
// create constant ints in the IR to form a list. Before calling
|
|
|
|
// constructListFromLiteral, we must be certain that the conversion can no
|
|
|
|
// longer fail, otherwise we will cause an infinite loop of creating a
|
|
|
|
// constant and removing it.
|
|
|
|
LogicalResult selfFromList = getListFromTensor(self, selfList);
|
|
|
|
LogicalResult otherFromList = getListFromTensor(other, otherList);
|
|
|
|
|
|
|
|
if (failed(selfFromList) && failed(otherFromList))
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "At least one operand must succeed at constructing a list");
|
|
|
|
|
|
|
|
auto selfLiteral = self.getDefiningOp<Torch::ValueTensorLiteralOp>();
|
|
|
|
auto otherLiteral = other.getDefiningOp<Torch::ValueTensorLiteralOp>();
|
|
|
|
if (succeeded(selfFromList) && otherLiteral &&
|
|
|
|
failed(constructListFromLiteral(rewriter, otherLiteral, otherList)))
|
|
|
|
return failure();
|
|
|
|
if (succeeded(otherFromList) && selfLiteral &&
|
|
|
|
failed(constructListFromLiteral(rewriter, selfLiteral, selfList)))
|
|
|
|
return failure();
|
|
|
|
if ((int64_t)selfList.size() != selfSize ||
|
|
|
|
(int64_t)otherList.size() != otherSize)
|
|
|
|
// this should only occur if we did not generate IR with
|
|
|
|
// constructListFromLiteral
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
SmallVector<Value> whereVals;
|
|
|
|
auto rank0IntTy = rewriter.getType<Torch::ValueTensorType>(
|
|
|
|
ArrayRef<int64_t>({}), selfTy.getDtype());
|
|
|
|
auto rank0BoolTy = rewriter.getType<Torch::ValueTensorType>(
|
|
|
|
ArrayRef<int64_t>({}), conditionTy.getDtype());
|
|
|
|
for (uint64_t i = 0; i < selfList.size(); i++) {
|
|
|
|
Value rank0Cond = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
|
|
loc, rank0BoolTy, conditionList[i]);
|
|
|
|
Value rank0Self = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
|
|
loc, rank0IntTy, selfList[i]);
|
|
|
|
Value rank0Other = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
|
|
loc, rank0IntTy, otherList[i]);
|
|
|
|
Value rank0Where = rewriter.create<AtenWhereSelfOp>(
|
|
|
|
loc, rank0IntTy, rank0Cond, rank0Self, rank0Other);
|
|
|
|
whereVals.push_back(rewriter.create<AtenItemOp>(
|
|
|
|
loc, rewriter.getType<Torch::IntType>(), rank0Where));
|
|
|
|
}
|
|
|
|
Value list = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
op.getLoc(), Torch::ListType::get(whereVals[0].getType()), whereVals);
|
|
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
|
|
op.getLoc(), rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), list, cstNone, cstNone, cstFalse);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class PropagateAtenEqTensorPattern : public OpRewritePattern<AtenEqTensorOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenEqTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenEqTensorOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value self = op.getSelf();
|
|
|
|
Value other = op.getOther();
|
|
|
|
auto selfTy = dyn_cast<Torch::ValueTensorType>(self.getType());
|
|
|
|
if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "bad self type");
|
|
|
|
auto otherTy = dyn_cast<Torch::ValueTensorType>(other.getType());
|
|
|
|
if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "bad other type");
|
|
|
|
int64_t selfSize = selfTy.getSizes()[0];
|
|
|
|
int64_t otherSize = otherTy.getSizes()[0];
|
|
|
|
|
|
|
|
if (selfSize != otherSize)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op,
|
|
|
|
"unimplemented: support for propogating with implicit broadcasting.");
|
|
|
|
|
|
|
|
constexpr int64_t kMaxFold = 16;
|
|
|
|
if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold ||
|
|
|
|
otherSize == Torch::kUnknownSize || otherSize > kMaxFold)
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
"self or other is dynamic or too big");
|
|
|
|
|
|
|
|
SmallVector<Value> selfList, otherList;
|
|
|
|
// If one of these tensors is a value tensor literal op, we will need to
|
|
|
|
// create constant ints in the IR to form a list. Before calling
|
|
|
|
// constructListFromLiteral, we must be certain that the conversion can no
|
|
|
|
// longer fail, otherwise we will cause an infinite loop of creating a
|
|
|
|
// constant and removing it.
|
|
|
|
LogicalResult selfFromList = getListFromTensor(self, selfList);
|
|
|
|
LogicalResult otherFromList = getListFromTensor(other, otherList);
|
|
|
|
|
|
|
|
if (failed(selfFromList) && failed(otherFromList))
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "At least one operand must succeed at constructing a list");
|
|
|
|
|
|
|
|
auto selfLiteral = self.getDefiningOp<Torch::ValueTensorLiteralOp>();
|
|
|
|
auto otherLiteral = other.getDefiningOp<Torch::ValueTensorLiteralOp>();
|
|
|
|
if (succeeded(selfFromList) && otherLiteral &&
|
|
|
|
failed(constructListFromLiteral(rewriter, otherLiteral, otherList)))
|
|
|
|
return failure();
|
|
|
|
if (succeeded(otherFromList) && selfLiteral &&
|
|
|
|
failed(constructListFromLiteral(rewriter, selfLiteral, selfList)))
|
|
|
|
return failure();
|
|
|
|
if ((int64_t)selfList.size() != selfSize ||
|
|
|
|
(int64_t)otherList.size() != otherSize)
|
|
|
|
// this should only occur if we did not generate IR with
|
|
|
|
// constructListFromLiteral
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
SmallVector<Value> eqVals;
|
|
|
|
for (uint64_t i = 0; i < selfList.size(); i++) {
|
|
|
|
eqVals.push_back(
|
|
|
|
rewriter.create<AtenEqIntOp>(op.getLoc(), selfList[i], otherList[i]));
|
|
|
|
}
|
|
|
|
Value list = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
op.getLoc(), Torch::ListType::get(eqVals[0].getType()), eqVals);
|
|
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
|
|
op.getLoc(), rewriter.getBoolAttr(false));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
|
|
op, op.getType(), list, cstNone, cstNone, cstFalse);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
namespace {
|
|
|
|
class PropagateAtenItemPattern : public OpRewritePattern<AtenItemOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenItemOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenItemOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
2024-04-03 07:19:57 +08:00
|
|
|
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
|
2024-03-27 03:41:40 +08:00
|
|
|
SmallVector<Value> elements;
|
|
|
|
if (failed(getListFromTensor(op.getSelf(), elements)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (elements.size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "expected no elements");
|
|
|
|
|
|
|
|
rewriter.replaceOp(op, elements[0]);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class FoldAtenTensorSplatPattern : public OpRewritePattern<AtenTensorOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenTensorOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenTensorOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
2024-04-03 07:19:57 +08:00
|
|
|
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
SmallVector<Value> elements;
|
|
|
|
if (failed(getListOperands(op.getData(), elements)))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (elements.size() < 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "no elements");
|
|
|
|
|
|
|
|
auto front = elements.front();
|
|
|
|
for (auto element : elements)
|
|
|
|
if (element != front)
|
|
|
|
return rewriter.notifyMatchFailure(op, "multiple elements found");
|
|
|
|
|
|
|
|
if (elements.size() != 1)
|
|
|
|
return rewriter.notifyMatchFailure(op, "expected no elements");
|
|
|
|
|
|
|
|
auto resultTy = cast<BaseTensorType>(op.getType());
|
|
|
|
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
|
|
|
|
return rewriter.notifyMatchFailure(op, "dynamic output shape");
|
|
|
|
|
|
|
|
auto loc = op.getLoc();
|
2024-04-03 07:19:57 +08:00
|
|
|
SmallVector<Value> sizes;
|
2024-03-27 03:41:40 +08:00
|
|
|
for (auto size : resultTy.getSizes())
|
|
|
|
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
loc, rewriter.getI64IntegerAttr(size)));
|
|
|
|
|
|
|
|
Value one = rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
loc, rewriter.getType<Torch::IntType>(), 1);
|
|
|
|
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
loc,
|
|
|
|
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
|
|
|
|
one);
|
|
|
|
|
|
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
2024-04-03 07:19:57 +08:00
|
|
|
rewriter.replaceOpWithNewOp<AtenFullOp>(
|
|
|
|
op, resultTy, sizeList, elements.front(), none, none, none, cstFalse);
|
2024-03-27 03:41:40 +08:00
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-04-03 07:19:57 +08:00
|
|
|
namespace {
|
|
|
|
class FoldAtenSqueezePattern : public OpRewritePattern<AtenSqueezeOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenSqueezeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenSqueezeOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto resultTy = cast<ValueTensorType>(op.getType());
|
|
|
|
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
|
|
|
|
return rewriter.notifyMatchFailure(op, "Unknown result shape");
|
|
|
|
|
|
|
|
if (auto atenFull = op.getSelf().getDefiningOp<AtenFullOp>()) {
|
|
|
|
SmallVector<Value> sizes;
|
|
|
|
for (int i = 0, s = resultTy.getSizes().size(); i < s; ++i)
|
|
|
|
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
op.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
|
|
rewriter.getI64IntegerAttr(i)));
|
|
|
|
|
|
|
|
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
op.getLoc(),
|
|
|
|
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
|
|
|
|
sizes);
|
|
|
|
|
|
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(op, resultTy, sizeList,
|
|
|
|
atenFull.getFillValue(),
|
|
|
|
none, none, none, none);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-10-12 00:15:17 +08:00
|
|
|
namespace {
|
|
|
|
class FoldAtenSqueezeDimPattern : public OpRewritePattern<AtenSqueezeDimOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenSqueezeDimOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenSqueezeDimOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto resultTy = cast<ValueTensorType>(op.getType());
|
|
|
|
if (!resultTy.hasSizes() || resultTy.getSizes().size() != 0)
|
|
|
|
return rewriter.notifyMatchFailure(op, "Unknown result shape");
|
|
|
|
|
|
|
|
if (auto atenFull = op.getSelf().getDefiningOp<AtenFullOp>()) {
|
|
|
|
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(
|
|
|
|
op, resultTy, atenFull.getFillValue());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-04-03 07:19:57 +08:00
|
|
|
namespace {
|
|
|
|
class FoldAtenWhereSelf : public OpRewritePattern<AtenWhereSelfOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenWhereSelfOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenWhereSelfOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
|
|
|
|
auto getRoot = [](Value v) {
|
|
|
|
while (true) {
|
|
|
|
if (auto numToTensor =
|
|
|
|
v.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
|
|
|
|
v = numToTensor.getA();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return v;
|
|
|
|
};
|
|
|
|
|
|
|
|
auto self = getRoot(op.getSelf());
|
|
|
|
auto other = getRoot(op.getOther());
|
|
|
|
|
|
|
|
if (self == other) {
|
|
|
|
rewriter.replaceOp(op, op.getSelf());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto selfSize = self.getDefiningOp<Torch::AtenSizeIntOp>();
|
|
|
|
auto otherSize = other.getDefiningOp<Torch::AtenSizeIntOp>();
|
|
|
|
|
|
|
|
if (selfSize && otherSize) {
|
|
|
|
if (selfSize.getSelf() != otherSize.getSelf())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (selfSize.getDim() != otherSize.getDim())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
rewriter.replaceOp(op, op.getSelf());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class FoldAtenUnsqueezePattern : public OpRewritePattern<AtenUnsqueezeOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenUnsqueezeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenUnsqueezeOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto resultTy = cast<ValueTensorType>(op.getType());
|
|
|
|
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
|
|
|
|
return rewriter.notifyMatchFailure(op, "Unknown result shape");
|
|
|
|
|
|
|
|
if (auto atenFull = op.getSelf().getDefiningOp<AtenFullOp>()) {
|
|
|
|
SmallVector<Value> sizes;
|
|
|
|
for (int i = 0, s = resultTy.getSizes().size(); i < s; ++i)
|
|
|
|
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
|
|
op.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
|
|
rewriter.getI64IntegerAttr(i)));
|
|
|
|
|
|
|
|
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
op.getLoc(),
|
|
|
|
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
|
|
|
|
sizes);
|
|
|
|
|
|
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(op, resultTy, sizeList,
|
|
|
|
atenFull.getFillValue(),
|
|
|
|
none, none, none, none);
|
|
|
|
return success();
|
|
|
|
}
|
2024-10-10 23:16:45 +08:00
|
|
|
auto squeezeOp = op.getSelf().getDefiningOp<AtenSqueezeDimOp>();
|
|
|
|
if (squeezeOp && resultTy.getSizes().size() == 1) {
|
|
|
|
rewriter.replaceOp(op, squeezeOp.getSelf());
|
|
|
|
return success();
|
|
|
|
}
|
2024-04-03 07:19:57 +08:00
|
|
|
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
2024-10-10 23:16:45 +08:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
// This is a specific pattern for converting views like [?,...,?,lastDim] ->
|
|
|
|
// [?,...,?,factor0,factor1] to unflatten, and views like
|
|
|
|
// [?,...,?,factor0,factor1] -> [?,...,?,lastDim] to flatten, whenever it is
|
|
|
|
// possible to infer that all but last shared dim match
|
|
|
|
// TODO: move this to an actual canonicalizer for view after deleting the
|
|
|
|
// conflicting decompositions for flatten/unflatten -> view.
|
|
|
|
class CanonicalizeAtenViewPattern : public OpRewritePattern<AtenViewOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<AtenViewOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtenViewOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
SmallVector<Value> viewSizes;
|
|
|
|
if (failed(getListOperands(op.getSize(), viewSizes)))
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "view size must be from a list construct");
|
|
|
|
auto selfTy = dyn_cast<Torch::ValueTensorType>(op.getSelf().getType());
|
|
|
|
if (!selfTy || !selfTy.hasSizes())
|
|
|
|
return rewriter.notifyMatchFailure(op, "missing input type or sizes");
|
|
|
|
auto resultTy = dyn_cast<Torch::ValueTensorType>(op.getType());
|
|
|
|
if (!resultTy || !resultTy.hasSizes() ||
|
|
|
|
resultTy.getSizes().size() != viewSizes.size())
|
|
|
|
return rewriter.notifyMatchFailure(op, "missing result type or sizes");
|
|
|
|
int64_t inRank = selfTy.getSizes().size();
|
|
|
|
int64_t outRank = resultTy.getSizes().size();
|
|
|
|
|
|
|
|
SmallVector<int64_t> sizes(selfTy.getSizes());
|
|
|
|
int64_t endMatchingDim = -1;
|
|
|
|
// input sizes vs. provided view sizes comparison loop
|
|
|
|
for (int64_t i = 0; i < std::min(outRank, inRank); i++) {
|
|
|
|
int64_t providedSize;
|
|
|
|
bool providedStatic =
|
|
|
|
matchPattern(viewSizes[i], m_TorchConstantInt(&providedSize));
|
|
|
|
// if sizes[i] is static, it must match a constant in viewSizes[i]
|
|
|
|
if (sizes[i] != Torch::kUnknownSize) {
|
|
|
|
if (!providedStatic)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unsupported: found static input dim, but unable to match "
|
|
|
|
"provided view size on a constant. See position : " +
|
|
|
|
std::to_string(i));
|
|
|
|
if (providedSize != sizes[i]) {
|
|
|
|
endMatchingDim = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// the remaining assumes sizes[i] is dynamic
|
|
|
|
// if provided dim is static, we can't verify it is a flatten/unflatten
|
|
|
|
// unless -1
|
|
|
|
if (i == outRank - 1 && providedStatic && providedSize == -1) {
|
|
|
|
endMatchingDim = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (providedStatic)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unexpected static view dim corresponding to dynamic input dim "
|
|
|
|
"at position : " +
|
|
|
|
std::to_string(i));
|
|
|
|
auto sizeIntOp = viewSizes[i].getDefiningOp<AtenSizeIntOp>();
|
|
|
|
// if we don't have a size int op on self, fail
|
|
|
|
if (!sizeIntOp || sizeIntOp.getSelf() != op.getSelf())
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "expected dynamic view dim to come from a corresponding "
|
|
|
|
"size.int op. See position : " +
|
|
|
|
std::to_string(i));
|
|
|
|
int64_t dim;
|
|
|
|
// if the dim of the size int op doesn't match, fail
|
|
|
|
if (!matchPattern(sizeIntOp.getDim(), m_TorchConstantInt(&dim)) ||
|
|
|
|
dim != i)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op,
|
|
|
|
"size int op dim cannot be matched to current dim at position : " +
|
|
|
|
std::to_string(i));
|
|
|
|
// passing the previous checks means viewSizes[i] = aten.size.int(self,
|
|
|
|
// i), so continue
|
|
|
|
}
|
|
|
|
// if all dims match and the ranks are equal, fold
|
|
|
|
if (endMatchingDim == -1 && inRank == outRank) {
|
|
|
|
rewriter.replaceOp(op, op.getSelf());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
if (endMatchingDim > -1 && inRank > outRank) {
|
|
|
|
// only support flattening last dim
|
|
|
|
if (endMatchingDim != outRank - 1)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unimplemented: output has more than back dim mismatching");
|
|
|
|
// flatten
|
|
|
|
Value start =
|
|
|
|
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), endMatchingDim);
|
|
|
|
Value end =
|
|
|
|
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), inRank - 1);
|
|
|
|
rewriter.replaceOpWithNewOp<AtenFlattenUsingIntsOp>(
|
|
|
|
op, resultTy, op.getSelf(), start, end);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
if (endMatchingDim > -1 && inRank < outRank) {
|
|
|
|
// only support unflattening last dim
|
|
|
|
if (endMatchingDim != inRank - 1)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unimplemented: input has more than back dim mismatching");
|
|
|
|
// unflatten
|
|
|
|
Value dim =
|
|
|
|
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), endMatchingDim);
|
|
|
|
Value primList = rewriter.create<Torch::PrimListConstructOp>(
|
|
|
|
op.getLoc(), op.getSize().getType(),
|
|
|
|
ArrayRef<Value>(viewSizes.begin() + endMatchingDim, viewSizes.end()));
|
|
|
|
rewriter.replaceOpWithNewOp<AtenUnflattenIntOp>(
|
|
|
|
op, resultTy, op.getSelf(), dim, primList);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
// examples that might reach this:
|
|
|
|
// input shape = [10, 5]; view sizes = [5, 10] (or dynamic variants)
|
|
|
|
// input shape = [dim0, dim1]; view sizes = [dim0, dim1, 1, 1] (unsqueezes)
|
|
|
|
// input shape = [dim0, dim1, 1, 1] view sizes = [dim0, dim1] (squeezes)
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
op, "unhandled case: endMatchingDim=" + std::to_string(endMatchingDim) +
|
|
|
|
", inRank=" + std::to_string(inRank) +
|
|
|
|
", outRank=" + std::to_string(outRank));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
2024-03-27 03:41:40 +08:00
|
|
|
namespace {
|
|
|
|
template <typename T> class RemoveUnusedPattern : public OpRewritePattern<T> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(T op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
for (auto use : op->getResults())
|
|
|
|
if (!use.use_empty())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class ScalarizeShapesPass : public ScalarizeShapesBase<ScalarizeShapesPass> {
|
|
|
|
public:
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
|
|
registry.insert<arith::ArithDialect>();
|
|
|
|
}
|
|
|
|
|
|
|
|
void runOnOperation() override {
|
|
|
|
MLIRContext *context = &getContext();
|
|
|
|
RewritePatternSet patterns(context);
|
2024-10-10 23:16:45 +08:00
|
|
|
patterns.insert<PropagateAtenCatPattern, PropagateAtenIndexSelectPattern,
|
|
|
|
PropagateAtenItemPattern, PropagateAtenShapeToTensorPattern,
|
|
|
|
PropagateAtenSliceTensorPattern, FoldAtenTensorSplatPattern,
|
|
|
|
FoldAtenSqueezePattern, FoldAtenUnsqueezePattern,
|
|
|
|
FoldAtenWhereSelf, CanonicalizeAtenViewPattern,
|
2024-10-12 00:15:17 +08:00
|
|
|
PropagateAtenEqTensorPattern, PropagateAtenWhereSelfPattern,
|
|
|
|
FoldAtenSqueezeDimPattern,
|
2024-10-10 23:16:45 +08:00
|
|
|
RemoveUnusedPattern<Torch::AtenIntBoolOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenEqIntOp>,
|
|
|
|
RemoveUnusedPattern<Torch::PrimNumToTensorScalarOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenFullOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenUnsqueezeOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenSqueezeDimOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenSizeIntOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenSliceTensorOp>,
|
|
|
|
RemoveUnusedPattern<Torch::AtenTensorOp>,
|
|
|
|
RemoveUnusedPattern<Torch::ConstantBoolOp>,
|
|
|
|
RemoveUnusedPattern<Torch::ConstantIntOp>,
|
|
|
|
RemoveUnusedPattern<Torch::ConstantNoneOp>,
|
|
|
|
RemoveUnusedPattern<Torch::PrimListConstructOp>>(context);
|
2024-03-27 03:41:40 +08:00
|
|
|
|
|
|
|
context->getLoadedDialect<mlir::arith::ArithDialect>()
|
|
|
|
->getCanonicalizationPatterns(patterns);
|
|
|
|
if (failed(applyPatternsAndFoldGreedily(getOperation(),
|
|
|
|
std::move(patterns)))) {
|
|
|
|
return signalPassFailure();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
|
|
mlir::torch::Torch::createScalarizeShapesPass() {
|
|
|
|
return std::make_unique<ScalarizeShapesPass>();
|
|
|
|
}
|