torch-mlir/test/Conversion/TorchToTosa/torch-backend-to-tosa-backe...

135 lines
7.5 KiB
MLIR
Raw Normal View History

// RUN: torch-mlir-opt -pass-pipeline='builtin.module(torch-backend-to-tosa-backend-pipeline)' -split-input-file -verify-diagnostics %s | FileCheck %s
// CHECK-LABEL: torch.aten.mul.Scalar$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5xbf16>
// CHECK: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<2.000000e+00> : tensor<1xbf16>}> : () -> tensor<1xbf16>
// CHECK: %[[VAL_2:.*]] = "tosa.mul"(%[[VAL_0]], %[[VAL_1]]) <{shift = 0 : i32}> : (tensor<5xbf16>, tensor<1xbf16>) -> tensor<5xbf16>
func.func @torch.aten.mul.Scalar$mixed_type(%arg0: !torch.vtensor<[5],bf16>) -> !torch.vtensor<[5],bf16> {
%float2.000000e00 = torch.constant.float 2.000000e+00
%0 = torch.aten.mul.Scalar %arg0, %float2.000000e00 : !torch.vtensor<[5],bf16>, !torch.float -> !torch.vtensor<[5],bf16>
return %0 : !torch.vtensor<[5],bf16>
}
// -----
// CHECK-LABEL: torch.aten.add.Tensor$mixed_type_fp
// CHECK-SAME: %[[VAL_0:.*]]: tensor<6xbf16>
// CHECK-SAME: %[[VAL_1:.*]]: tensor<6xf32>
// CHECK: %[[VAL_3:.*]] = "tosa.cast"(%[[VAL_1]]) : (tensor<6xf32>) -> tensor<6xbf16>
// CHECK: %[[VAL_4:.*]] = "tosa.add"(%[[VAL_0]], %[[VAL_3]]) : (tensor<6xbf16>, tensor<6xbf16>) -> tensor<6xbf16>
func.func @torch.aten.add.Tensor$mixed_type_fp(%arg0: !torch.vtensor<[6],bf16>, %arg1: !torch.vtensor<[6],f32>, %arg2: !torch.float) -> !torch.vtensor<[6],bf16> {
%float1 = torch.constant.float 1.000000e+00
%0 = torch.aten.add.Tensor %arg0, %arg1, %float1 : !torch.vtensor<[6],bf16>, !torch.vtensor<[6],f32>, !torch.float -> !torch.vtensor<[6],bf16>
return %0 : !torch.vtensor<[6],bf16>
}
// -----
// CHECK-LABEL: torch.aten.add.Tensor$mixed_type_int
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5xf32>
// CHECK-SAME: %[[VAL_1:.*]]: tensor<5xbf16>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_1]]) : (tensor<5xbf16>) -> tensor<5xf32>
// CHECK: %[[VAL_3:.*]] = "tosa.add"(%[[VAL_0]], %[[VAL_2]]) : (tensor<5xf32>, tensor<5xf32>) -> tensor<5xf32>
func.func @torch.aten.add.Tensor$mixed_type_int(%arg0: !torch.vtensor<[5],f32>, %arg1: !torch.vtensor<[5],bf16>) -> !torch.vtensor<[5],f32> {
%int1 = torch.constant.int 1
%0 = torch.aten.add.Tensor %arg0, %arg1, %int1 : !torch.vtensor<[5],f32>, !torch.vtensor<[5],bf16>, !torch.int -> !torch.vtensor<[5],f32>
return %0 : !torch.vtensor<[5],f32>
}
// -----
// CHECK-LABEL: torch.aten.Scalar$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x32x64xi16>
// CHECK: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<256> : tensor<1x1x1x1xi32>}> : () -> tensor<1x1x1x1xi32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_0]]) : (tensor<1x1x32x64xi16>) -> tensor<1x1x32x64xi32>
// CHECK: %[[VAL_3:.*]] = "tosa.add"(%[[VAL_2]], %[[VAL_1]]) : (tensor<1x1x32x64xi32>, tensor<1x1x1x1xi32>) -> tensor<1x1x32x64xi32>
func.func @torch.aten.Scalar$mixed_type(%arg0: !torch.vtensor<[1,1,32,64],si16>) -> !torch.vtensor<[1,1,32,64],si32> {
%int1 = torch.constant.int 1
%int256 = torch.constant.int 256
%0 = torch.aten.add.Scalar %arg0, %int256, %int1 : !torch.vtensor<[1,1,32,64],si16>, !torch.int, !torch.int -> !torch.vtensor<[1,1,32,64],si32>
return %0 : !torch.vtensor<[1,1,32,64],si32>
}
// -----
// CHECK-LABEL: torch.aten.sub.Scalar$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<bf16>,
// CHECK: %[[VAL_2:.*]] = "tosa.const"() <{value = dense<1.000000e+00> : tensor<bf16>}> : () -> tensor<bf16>
// CHECK: %[[VAL_3:.*]] = "tosa.sub"(%[[VAL_0]], %[[VAL_2]]) : (tensor<bf16>, tensor<bf16>) -> tensor<bf16>
func.func @torch.aten.sub.Scalar$mixed_type(%arg0: !torch.vtensor<[],bf16>, %arg1: !torch.vtensor<[],bf16>) -> !torch.vtensor<[],bf16> {
%int1 = torch.constant.int 1
%0 = torch.aten.sub.Scalar %arg0, %int1, %int1 : !torch.vtensor<[],bf16>, !torch.int, !torch.int -> !torch.vtensor<[],bf16>
return %0 : !torch.vtensor<[],bf16>
}
// -----
// CHECK-LABEL: torch.aten.maximum$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x3x1xi32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<1x3x1xf32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_0]]) : (tensor<1x3x1xi32>) -> tensor<1x3x1xf32>
// CHECK: %[[VAL_3:.*]] = "tosa.maximum"(%[[VAL_2]], %[[VAL_1]]) : (tensor<1x3x1xf32>, tensor<1x3x1xf32>) -> tensor<1x3x1xf32>
func.func @torch.aten.maximum$mixed_type(%arg0: !torch.vtensor<[1,3,1],si32>, %arg1: !torch.vtensor<[1,3,1],f32>) -> !torch.vtensor<[1,3,1],f32> {
%0 = torch.aten.maximum %arg0, %arg1 : !torch.vtensor<[1,3,1],si32>, !torch.vtensor<[1,3,1],f32> -> !torch.vtensor<[1,3,1],f32>
return %0 : !torch.vtensor<[1,3,1],f32>
}
// -----
// CHECK-LABEL: torch.aten.bitwise_and.Tensor$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi16>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xi32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_0]]) : (tensor<?x?xi16>) -> tensor<?x?xi32>
// CHECK: %[[VAL_3:.*]] = "tosa.bitwise_and"(%[[VAL_2]], %[[VAL_1]]) : (tensor<?x?xi32>, tensor<?x?xi32>) -> tensor<?x?xi32>
func.func @torch.aten.bitwise_and.Tensor$mixed_type(%arg0: !torch.vtensor<[?,?],si16>, %arg1: !torch.vtensor<[?,?],si32>) -> !torch.vtensor<[?,?],si32> {
%0 = torch.aten.bitwise_and.Tensor %arg0, %arg1 : !torch.vtensor<[?,?],si16>, !torch.vtensor<[?,?],si32> -> !torch.vtensor<[?,?],si32>
return %0 : !torch.vtensor<[?,?],si32>
}
// -----
// CHECK-LABEL: torch.aten.div.Tensor$mixed_type_fp
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xi32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_1]]) : (tensor<?x?xi32>) -> tensor<?x?xf32>
// CHECK: %[[VAL_3:.*]] = "tosa.reciprocal"(%[[VAL_2]]) : (tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[VAL_4:.*]] = "tosa.mul"(%[[VAL_0]], %[[VAL_3]]) <{shift = 0 : i32}> : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
func.func @torch.aten.div.Tensor$mixed_type_fp(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],si32>) -> !torch.vtensor<[?, ?],f32> {
%0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],si32> -> !torch.vtensor<[?, ?],f32>
return %0 : !torch.vtensor<[?, ?],f32>
}
// -----
// CHECK-LABEL: torch.aten.div.Tensor$mixed_type_int
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi16>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xi32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_0]]) : (tensor<?x?xi16>) -> tensor<?x?xi32>
// CHECK: %[[VAL_3:.*]] = "tosa.div"(%[[VAL_2]], %[[VAL_1]]) : (tensor<?x?xi32>, tensor<?x?xi32>) -> tensor<?x?xi32>
func.func @torch.aten.div.Tensor$mixed_type_int(%arg0: !torch.vtensor<[?, ?],si16>, %arg1: !torch.vtensor<[?, ?],si32>) -> !torch.vtensor<[?, ?],si32> {
%0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],si16>, !torch.vtensor<[?, ?],si32> -> !torch.vtensor<[?, ?],si32>
return %0 : !torch.vtensor<[?, ?],si32>
}
// -----
// CHECK-LABEL: torch.aten.pow.Tensor$mixed_type
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf16>
// CHECK: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<3.123400e+00> : tensor<1x1xf32>}> : () -> tensor<1x1xf32>
// CHECK: %[[VAL_2:.*]] = "tosa.cast"(%[[VAL_0]]) : (tensor<?x?xf16>) -> tensor<?x?xf32>
// CHECK: %[[VAL_3:.*]] = "tosa.pow"(%[[VAL_2]], %[[VAL_1]]) : (tensor<?x?xf32>, tensor<1x1xf32>) -> tensor<?x?xf32>
func.func @torch.aten.pow.Tensor$mixed_type(%arg0: !torch.vtensor<[?,?],f16>) -> !torch.vtensor<[?,?],f32> {
%fp0 = torch.constant.float 3.123400e+00
%0 = torch.aten.pow.Tensor_Scalar %arg0, %fp0 : !torch.vtensor<[?,?],f16>, !torch.float -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
func.func @torch.prim.TupleConstruct() {
%int128 = torch.constant.int 128
%0 = torch.prim.TupleConstruct %int128 : !torch.int -> !torch.tuple<int>
// expected-error @below {{failed to legalize operation 'torch.prim.Print' that was explicitly marked illegal}}
torch.prim.Print(%0) : !torch.tuple<int>
return
}