[fx] Use module Operations instead of Module.

This was only used in certain advanced uses of the API that want to build into their own module. The MLIR `Module` class is an awkward/restrictive way to require this to go as only some things will have it. Just switch everything to be based on a module `Operation`.
fx_use_module_op
Stella Laurenzo 2024-03-21 19:57:53 -07:00
parent 6ea857c644
commit 04685a98e8
1 changed files with 38 additions and 22 deletions

View File

@ -302,7 +302,9 @@ def sparsity_encoding(shape: torch.Size, sparsity: SparsityMeta) -> str:
if sparsity.layout is torch.sparse_coo:
assert sparse_dim >= 2 and blocksize is None
trail_dim = batch_dim + sparse_dim - 1
coords = ",".join(f"d{d}:singleton(nonunique,soa)" for d in range(batch_dim+1, trail_dim))
coords = ",".join(
f"d{d}:singleton(nonunique,soa)" for d in range(batch_dim + 1, trail_dim)
)
sep = "," if sparse_dim > 2 else ""
lvls = f"d{batch_dim}:compressed(nonunique),{coords}{sep}d{trail_dim}:singleton(soa)"
elif sparsity.layout is torch.sparse_csr:
@ -415,7 +417,7 @@ class FxImporter:
__slots__ = [
"_c",
"_cc",
"_m",
"_m_op",
"_m_ip",
"_py_attr_tracker",
"_hooks",
@ -425,28 +427,31 @@ class FxImporter:
def __init__(
self,
*,
module: Optional[Module] = None,
module_op: Optional[Operation] = None,
context: Optional[Context] = None,
config_check: bool = True,
py_attr_tracker: Optional["RefTracker"] = None,
hooks: Optional[FxImporterHooks] = None,
):
if module is not None:
assert context is None, "If configuring with a Module, context must be None"
self._m = module
self._c = self.module.context
if module_op is not None:
assert (
context is None
), "If configuring with a module op, context must be None"
self._m_op = module_op
self._c = self._m_op.context
else:
self._c = context if context else Context()
self._m = Module.create(Location.unknown(self._c))
self._m_op = Module.create(Location.unknown(self._c)).operation
body = self._m_op.regions[0].blocks[0]
if config_check:
# Production code can disable this for a bit of a boost.
self._config_check()
self._py_attr_tracker = py_attr_tracker or RefTracker()
self._cc = ContextCache(self._c, py_attr_tracker=self._py_attr_tracker)
self._m_ip = InsertionPoint(self._m.body)
self._m_ip = InsertionPoint(body)
self._hooks = hooks or FxImporterHooks()
self.symbol_table = SymbolTable(self._m.operation)
self._hooks.prepare_module(self._m.operation)
self.symbol_table = SymbolTable(self._m_op)
self._hooks.prepare_module(self._m_op)
def _config_check(self):
for dname in REQUIRED_DIALCTS:
@ -458,17 +463,17 @@ class FxImporter:
f"The MLIR context {self._c} is missing required dialect '{dname}'"
)
@property
def module(self) -> Module:
return self._m
@property
def module_op(self) -> Operation:
return self._m.operation
return self._m_op
def import_program(
self, prog: torch.export.ExportedProgram, *, func_name: str = "main"
):
self,
prog: torch.export.ExportedProgram,
*,
func_name: str = "main",
func_visibility: Optional[str] = None,
) -> Operation:
"""Imports an ExportedProgram according to our chosen canonical representation.
This mechanism is the fully general solution for handling an ExportedProgram
@ -490,6 +495,8 @@ class FxImporter:
It is recommended that integrators subclass and override the `resolve_literal`
method to control access to mutable buffers and parameters. Without that, the
default policy is to capture them as frozen values.
Returns the created entry function as a generic Operation.
"""
# Create lookaside table of placeholders/outputs.
placeholder_nodes: Dict[str, Node] = {}
@ -628,7 +635,9 @@ class FxImporter:
# Create the function.
with loc:
func_op = func_dialect.FuncOp(func_name, ftype, ip=self._m_ip)
func_op = func_dialect.FuncOp(
func_name, ftype, ip=self._m_ip, visibility=func_visibility
)
entry_block = Block.create_at_start(func_op.body, ftype.inputs)
node_importer = GraphNodeImporter(
@ -668,9 +677,13 @@ class FxImporter:
)
node_importer.return_node_values(loc, user_outputs)
self.symbol_table.insert(func_op)
return func_op.operation
def import_frozen_program(
self, prog: torch.export.ExportedProgram, func_name: str = "main"
self,
prog: torch.export.ExportedProgram,
func_name: str = "main",
func_visibility: Optional[str] = None,
):
"""Imports a consolidated torch.export.ExportedProgram instance.
@ -750,7 +763,7 @@ class FxImporter:
node.replace_all_uses_with(replacement)
g.erase_node(node)
self.import_stateless_graph(g, func_name)
self.import_stateless_graph(g, func_name, func_visibility=func_visibility)
def import_graph_module(self, gm: GraphModule):
"""Low-level import of a GraphModule assuming that it has been functionalized.
@ -760,7 +773,9 @@ class FxImporter:
"""
self.import_stateless_graph(gm.graph)
def import_stateless_graph(self, g: Graph, func_name: str = "main"):
def import_stateless_graph(
self, g: Graph, func_name: str = "main", func_visibility: Optional[str] = None
):
"""Low-level import of a functionalized, assumed stateless Graph as a func.
TODO: This mechanism is deprecated by the `import_program` entry-point and
@ -775,6 +790,7 @@ class FxImporter:
func_name,
ftype,
ip=self._m_ip,
func_visibility=func_visibility,
)
entry_block = Block.create_at_start(func.body, ftype.inputs)
node_importer = GraphNodeImporter(