Remove unnecessary files.

github-pages
Daniel Ellis 2020-04-26 16:12:27 -07:00
parent 9ee2f6ff7f
commit 0f6e23d46f
33 changed files with 676 additions and 3504 deletions

View File

@ -0,0 +1,39 @@
name: "Setup build environment"
description: "Setup the build environment. An action so that it can be shared between in-tree/out-of-tree jobs"
inputs:
cache-suffix:
description: |
Additional string that is used to compute the ccache hash.
Different jobs running the action need distinct values for this key,
but the content is irrelevant.
required: true
runs:
using: "composite"
steps:
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install MLIR Python depends
run: |
python -m pip install -r $GITHUB_WORKSPACE/externals/llvm-project/mlir/python/requirements.txt
shell: bash
- name: Install PyTorch nightly depends
run: |
python -m pip install -r requirements.txt
shell: bash
- name: Install Ninja
uses: llvm/actions/install-ninja@55d844821959226fab4911f96f37071c1d4c3268
- name: Ccache for C++ compilation
uses: hendrikmuhs/ccache-action@v1.2
with:
key: ${{ runner.os }}-torch_mlir_build_assets-${{ inputs.cache-suffix }}
max-size: 2G
verbose: 2

View File

@ -0,0 +1,78 @@
name: Bazel Build and Test
on:
push:
branches: [ main ]
workflow_dispatch:
# Ensure that only a single job or workflow using the same
# concurrency group will run at a time. This would cancel
# any in-progress jobs in the same github workflow and github
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
ubuntu-build:
name: ubuntu-x86_64
runs-on: ubuntu-22.04
steps:
- name: Checkout torch-mlir
uses: actions/checkout@v3
with:
submodules: 'true'
- name: Setup cache for bazel
uses: actions/cache@v3
with:
path: ~/.cache/bazel
key: ubuntu_x86_64_torch_mlir_bazel_build_cache
# Change bazel cache directory to root ownership
# to allow writing to it from within the docker container.
# If no cache hits, this directory is not present
# so don't run chown (will error otherwise).
- name: Set bazel cache permissions
run: |
if [ -d "${HOME}/.cache/bazel" ]; then
sudo chown -R root:root "${HOME}/.cache/bazel"
fi
- name: Build docker image
run: |
docker build -f utils/bazel/docker/Dockerfile \
-t torch-mlir:ci \
.
- name: Bazel build torch-mlir
run: |
docker run --rm \
-v "$(pwd)":"/opt/src/torch-mlir" \
-v "${HOME}/.cache/bazel":"/root/.cache/bazel" \
torch-mlir:ci \
./utils/bazel/docker/run_bazel_build.sh
# Switch back bazel cache directory to user ownership
# to allow GHA post-cache step to save cache without
# permissions issue.
- name: Switch bazel cache permissions
run: |
if [ -d "${HOME}/.cache/bazel" ]; then
sudo chown -R "$USER":"$USER" "${HOME}/.cache/bazel"
fi
- name: Send mail
if: failure()
uses: dawidd6/action-send-mail@v3
with:
server_address: ${{ secrets.SMTP_SERVER }}
server_port: ${{ secrets.SMTP_PORT }}
username: ${{ secrets.SMTP_USERNAME }}
password: ${{ secrets.SMTP_PASSWORD }}
subject: GitHub Action Bazel Build and Test failed!
body: Bazel Build job failed! See https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }} for more information.
to: ${{ secrets.MAIL_RECEIVER }}
from: Torch-MLIR Bazel Build GitHub Actions

View File

@ -0,0 +1,96 @@
name: Build and Test
on:
pull_request:
branches: [ main ]
push:
branches: [ main ]
workflow_dispatch:
# Ensure that only a single job or workflow using the same
# concurrency group will run at a time. This would cancel
# any in-progress jobs in the same github workflow and github
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
# Provisioned Jobs:
# ubuntu/docker - x86_64 - llvm in-tree - pytorch binary - build+test # most used dev flow and fastest signal
# ubuntu/docker - x86_64 - llvm out-of-tree - pytorch source - build+test # most elaborate build
# macos - arm64 - llvm in-tree - pytorch binary - build only # cross compile, can't test arm64
jobs:
build-test:
strategy:
fail-fast: true
matrix:
os-arch: [ubuntu-x86_64, macos-arm64]
llvm-build: [in-tree, out-of-tree]
torch-binary: [ON, OFF]
exclude:
# Exclude llvm in-tree and pytorch source
- llvm-build: in-tree
torch-binary: OFF
# Exclude llvm out-of-tree and pytorch binary
- llvm-build: out-of-tree
torch-binary: ON
# Exclude macos-arm64 and llvm out-of-tree altogether
- os-arch: macos-arm64
llvm-build: out-of-tree
include:
# Specify OS versions
- os-arch: ubuntu-x86_64
os: ubuntu-22.04
- os-arch: macos-arm64
os: macos-12
runs-on: ${{ matrix.os }}
steps:
- name: Checkout torch-mlir
uses: actions/checkout@v2
with:
submodules: 'true'
- name: Setup ccache
uses: ./.github/actions/setup-build
with:
cache-suffix: ${{ matrix.os-arch }}-${{ matrix.llvm-build }}-${{ matrix.torch-binary }}
- name: Build and Test os-arch='ubuntu-x86_64' llvm-build='${{ matrix.llvm-build }}' torch-binary='${{ matrix.torch-binary }}'
if: ${{ matrix.os-arch == 'ubuntu-x86_64' }}
run: |
cd $GITHUB_WORKSPACE
TM_PACKAGES="${{ matrix.llvm-build }}" TM_USE_PYTORCH_BINARY="${{ matrix.torch-binary }}" ./build_tools/python_deploy/build_linux_packages.sh
- name: Configure os-arch='macos-arm64' llvm-build='in-tree' torch-binary='${{ matrix.torch-binary }}'
# cross compile, can't test arm64
if: ${{ matrix.os-arch == 'macos-arm64' && matrix.llvm-build == 'in-tree' }}
run: |
# TODO: Reenable LTC after build on macOS-arm64 is fixed (https://github.com/llvm/torch-mlir/issues/1253)
cmake -GNinja -Bbuild_arm64 \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_LINKER=lld \
-DCMAKE_OSX_ARCHITECTURES=arm64 \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_EXTERNAL_PROJECTS="torch-mlir;torch-mlir-dialects" \
-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR="$GITHUB_WORKSPACE" \
-DLLVM_EXTERNAL_TORCH_MLIR_DIALECTS_SOURCE_DIR="${GITHUB_WORKSPACE}/externals/llvm-external-projects/torch-mlir-dialects" \
-DLLVM_TARGETS_TO_BUILD=AArch64 \
-DLLVM_USE_HOST_TOOLS=ON \
-DLLVM_ENABLE_ZSTD=OFF \
-DMLIR_ENABLE_BINDINGS_PYTHON=ON \
-DTORCH_MLIR_ENABLE_MHLO=OFF \
-DTORCH_MLIR_ENABLE_LTC=OFF \
-DTORCH_MLIR_USE_INSTALLED_PYTORCH="${{ matrix.torch-binary }}" \
-DMACOSX_DEPLOYMENT_TARGET=12.0 \
-DPython3_EXECUTABLE="$(which python)" \
$GITHUB_WORKSPACE/externals/llvm-project/llvm
- name: Build torch-mlir (cross-compile)
if: ${{ matrix.os-arch == 'macos-arm64' }}
run: |
cmake --build build_arm64

View File

@ -0,0 +1,95 @@
name: Release Build
on:
workflow_dispatch:
inputs:
release_id:
description: 'Release id to upload artifacts to'
default: ''
python_package_version:
description: 'Version to use for creating the Python package'
default: ''
jobs:
build_linux:
name: Manylinux Build
runs-on: ubuntu-latest
steps:
- name: Get torch-mlir
uses: actions/checkout@v2
with:
submodules: 'true'
- uses: ./.github/actions/setup-build
with:
cache-suffix: ''
- name: Build Python wheels and smoke test.
run: |
cd $GITHUB_WORKSPACE
python -m pip install wheel
TM_PACKAGE_VERSION=${{ github.event.inputs.python_package_version }}
printf "TORCH_MLIR_PYTHON_PACKAGE_VERSION=%s\n" $TM_PACKAGE_VERSION > ./torch_mlir_package_version
./build_tools/python_deploy/build_linux_packages.sh
# If we were given a release_id, then upload the package we just built
# to the github releases page.
- name: Upload Release Assets (if requested)
if: github.event.inputs.release_id != ''
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
release_id: ${{ github.event.inputs.release_id }}
assets_path: ./build_tools/python_deploy/wheelhouse/torch*.whl
# Publishing is necessary to make the release visible to `pip`
# on the github releases page.
- name: Publish Release (if requested)
if: github.event.inputs.release_id != ''
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
release_id: ${{ github.event.inputs.release_id }}
build_macos:
name: MacOS Build
runs-on: macos-12
steps:
- name: Get torch-mlir
uses: actions/checkout@v2
with:
submodules: 'true'
- uses: ./.github/actions/setup-build
with:
cache-suffix: ''
- name: Build Python wheels and smoke test.
run: |
cd $GITHUB_WORKSPACE
python -m pip install wheel
TM_PACKAGE_VERSION=${{ github.event.inputs.python_package_version }}
printf "TORCH_MLIR_PYTHON_PACKAGE_VERSION=%s\n" $TM_PACKAGE_VERSION > ./torch_mlir_package_version
sudo ./build_tools/python_deploy/install_macos_deps.sh
TORCH_MLIR_PYTHON_VERSIONS="3.10" ./build_tools/python_deploy/build_macos_packages.sh
# If we were given a release_id, then upload the package we just built
# to the github releases page.
- name: Upload Release Assets (if requested)
if: github.event.inputs.release_id != ''
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
release_id: ${{ github.event.inputs.release_id }}
assets_path: ./build_tools/python_deploy/wheelhouse/torch*.whl
# Publishing is necessary to make the release visible to `pip`
# on the github releases page.
- name: Publish Release (if requested)
if: github.event.inputs.release_id != ''
id: publish_release
uses: eregon/publish-release@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
release_id: ${{ github.event.inputs.release_id }}

View File

@ -0,0 +1,58 @@
name: Publish releases page
on:
pull_request:
branches: [ main ]
schedule:
- cron: '0 * * * *'
workflow_dispatch:
# Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages
permissions:
contents: read
pages: write
id-token: write
# Allow one concurrent deployment of GitHub Pages
concurrency:
group: "pages"
cancel-in-progress: true
jobs:
scrape_and_publish_releases:
name: "Scrape and publish releases"
runs-on: ubuntu-20.04
#environment:
# name: github-pages
# url: ${{ steps.deployment.outputs.page_url }}
# Don't run this in everyone's forks.
if: github.repository == 'llvm/torch-mlir'
steps:
- name: Checking out repository
uses: actions/checkout@v2
with:
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
- name: Run scrape releases script
run: python ./tools/scrape_releases.py llvm torch-mlir > index.html
shell: bash
- run: git config --global user.email "none@none.com"
- run: git config --global user.name "torch-mlir"
- run: git add index.html
- run: git commit -am "Update releases."
- name: GitHub Push
uses: ad-m/github-push-action@v0.6.0
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
branch: github-pages
force: true
#- name: Setup Pages
# uses: actions/configure-pages@v2
#- name: Upload artifact
# uses: actions/upload-pages-artifact@v1
# with:
# # Upload entire repository
# path: '.'
#- name: Deploy to GitHub Pages
# id: deployment
# uses: actions/deploy-pages@v1

View File

@ -0,0 +1,63 @@
name: Release oneshot snapshot package
on:
workflow_dispatch:
jobs:
release_snapshot_package:
name: "Tag snapshot release"
runs-on: ubuntu-latest
# Don't run this in everyone's forks.
if: github.repository == 'llvm/torch-mlir'
steps:
- name: Checking out repository
uses: actions/checkout@v2
with:
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
- name: Compute version
run: |
git fetch --depth=1 origin +refs/tags/*:refs/tags/*
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
tag_name="oneshot-${package_version}"
echo "package_version=${package_version}" >> $GITHUB_ENV
echo "tag_name=${tag_name}" >> $GITHUB_ENV
- name: Updating snapshot tag
run: |
git tag "${tag_name}"
- name: Pushing changes
uses: ad-m/github-push-action@v0.6.0
with:
github_token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
branch: ${{ github.ref_name }}
tags: true
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: torch-mlir snapshot ${{ env.tag_name }}
body: |
Automatic snapshot release of torch-mlir.
draft: true
prerelease: false
- name: "Invoke workflow :: Build and Test"
uses: benc-uk/workflow-dispatch@v1
with:
workflow: Build and Test
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
ref: "${{ env.tag_name }}"
- name: "Invoke workflow :: Release Build"
uses: benc-uk/workflow-dispatch@v1
with:
workflow: Release Build
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
ref: "${{ env.tag_name }}"
inputs: '{"release_id": "${{ steps.create_release.outputs.id }}", "python_package_version": "${{ env.package_version }}"}'

View File

@ -0,0 +1,66 @@
name: Release snapshot package
on:
schedule:
- cron: '0 11 * * *'
workflow_dispatch:
jobs:
release_snapshot_package:
name: "Tag snapshot release"
runs-on: ubuntu-20.04
# Don't run this in everyone's forks.
if: github.repository == 'llvm/torch-mlir'
steps:
- name: Checking out repository
uses: actions/checkout@v2
with:
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
- name: Compute version
run: |
git fetch --depth=1 origin +refs/tags/*:refs/tags/*
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
tag_name="snapshot-${package_version}"
echo "package_version=${package_version}" >> $GITHUB_ENV
echo "tag_name=${tag_name}" >> $GITHUB_ENV
- name: Updating snapshot tag
run: |
git tag "${tag_name}"
- name: Pushing changes
uses: ad-m/github-push-action@v0.6.0
with:
github_token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
branch: main
tags: true
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
with:
tag_name: ${{ env.tag_name }}
release_name: torch-mlir snapshot ${{ env.tag_name }}
body: |
Automatic snapshot release of torch-mlir.
draft: true
prerelease: false
- name: "Invoke workflow :: Build and Test"
uses: benc-uk/workflow-dispatch@v1
with:
workflow: Build and Test
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
ref: "${{ env.tag_name }}"
- name: "Invoke workflow :: Release Build"
uses: benc-uk/workflow-dispatch@v1
with:
workflow: Release Build
token: ${{ secrets.WORKFLOW_INVOCATION_TOKEN }}
ref: "${{ env.tag_name }}"
inputs: '{"release_id": "${{ steps.create_release.outputs.id }}", "python_package_version": "${{ env.package_version }}"}'

34
.gitignore vendored 100644
View File

@ -0,0 +1,34 @@
*.swp
.cache/
.vscode
.ccache
.env
*.code-workspace
.ipynb_checkpoints
*.venv/
mlir_venv/
externals/pytorch/
libtorch*
/build/
__pycache__
*.pyc
.pytype
# Pip artifacts.
*.egg-info
*.whl
/wheelhouse
# Bazel
bazel-*
# Autogenerated files
/python/torch_mlir/csrc/base_lazy_backend/generated
#Docker builds
build_oot/
docker_venv/
llvm-build/

View File

@ -1,25 +0,0 @@
# MLIR npcomp project.
set(MLIR_NPCOMP_MAIN_SRC_DIR ${CMAKE_CURRENT_SOURCE_DIR}) # --src-root
set(MLIR_NPCOMP_INCLUDE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/include) # --includedir
set(MLIR_NPCOMP_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(MLIR_NPCOMP_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
# TODO(laurenzo): Rationalize with how this is done elsewhere
find_package(PythonInterp REQUIRED)
find_package(PythonLibs REQUIRED)
message(STATUS "Found python include dirs: ${PYTHON_INCLUDE_DIRS}")
message(STATUS "Found ppython libraries: ${PYTHON_LIBRARIES}")
find_package(pybind11 CONFIG REQUIRED)
message(STATUS "Found pybind11 v${pybind11_VERSION}: ${pybind11_INCLUDE_DIRS}")
# TODO(laurenzo): What is the right way to get include directories for
# cross project dependencies?
include_directories(${MLIR_NPCOMP_INCLUDE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/../mlir/include)
include_directories(${CMAKE_BINARY_DIR}/tools/mlir/include)
add_subdirectory(include/npcomp)
add_subdirectory(lib)
add_subdirectory(python)

View File

@ -1,44 +0,0 @@
# npcomp - An aspirational MLIR based numpy compiler
## Scratch-pad of build configurations that have worked
### VSCode settings for configuring CMake
```json
"cmake.configureArgs": [
"-DLLVM_TARGETS_TO_BUILD=X86",
"-DLLVM_ENABLE_PROJECTS=mlir;npcomp",
"-DPYTHON_EXECUTABLE=/bin/python3",
"-DLLVM_EXTERNAL_PROJECTS=npcomp",
"-DLLVM_ENABLE_ASSERTIONS:BOOL=ON"
]
```
### Installing pybind11
The native extension relies on pybind11. In a perfect world, this could just
be installed with your system package manager. However, at least on
Ubuntu Disco, the system package installed with broken cmake files.
I built/installed from pybind11 head without issue and put it in /usr/local.
There are better ways to do this.
### Building the python native library
```shell
# From the build directory
ninja NPCOMPNativePyExt
# Outputs to tools/npcomp/python/npcomp/native...so
export PYTHONPATH=$(pwd)/tools/npcomp/python
python3 -m npcomp.smoketest
```
Notes:
* Python sources are symlinked to the output directory at configure time.
Adding sources will require a reconfigure. Editing should not.
* It is a very common issue to have both python 2.7 (aka. "python") and python
3.x (aka. "python3") on a system at a time (and we can only hope that one
day this ends). Since the native library at development time binds to a
specific version, if you try to run with a different python, you will get
an error about the "native" module not being found.

View File

@ -1 +0,0 @@
# Empty file

View File

@ -1 +0,0 @@
// Empty file

147
index.html 100644
View File

@ -0,0 +1,147 @@
<!DOCTYPE html>
<html>
<body>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch-1.13.0.dev20220920%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220920+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch-1.13.0.dev20220920%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220920+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch-1.13.0.dev20220920-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220920-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch_mlir-20220920.602-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220920.602-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch_mlir-20220920.602-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220920.602-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220920.602/torch_mlir-20220920.602-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220920.602-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch-1.13.0.dev20220919%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220919+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch-1.13.0.dev20220919%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220919+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch-1.13.0.dev20220919-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220919-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch_mlir-20220919.601-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220919.601-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch_mlir-20220919.601-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220919.601-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220919.601/torch_mlir-20220919.601-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220919.601-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220918.600/torch-1.13.0.dev20220918%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220918+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220918.600/torch-1.13.0.dev20220918%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220918+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220918.600/torch_mlir-20220918.600-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220918.600-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220918.600/torch_mlir-20220918.600-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220918.600-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220917.599/torch-1.13.0.dev20220917%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220917+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220917.599/torch-1.13.0.dev20220917%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220917+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220917.599/torch_mlir-20220917.599-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220917.599-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220917.599/torch_mlir-20220917.599-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220917.599-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220916.598/torch-1.13.0.dev20220916%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220916+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220916.598/torch-1.13.0.dev20220916%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220916+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220916.598/torch_mlir-20220916.598-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220916.598-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220916.598/torch_mlir-20220916.598-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220916.598-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220915.597/torch-1.13.0.dev20220915%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220915+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220915.597/torch-1.13.0.dev20220915%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220915+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220915.597/torch_mlir-20220915.597-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220915.597-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220915.597/torch_mlir-20220915.597-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220915.597-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220914.596/torch-1.13.0.dev20220914%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220914+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220914.596/torch-1.13.0.dev20220914%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220914+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220914.596/torch_mlir-20220914.596-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220914.596-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220914.596/torch_mlir-20220914.596-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220914.596-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch-1.13.0.dev20220913%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220913+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch-1.13.0.dev20220913%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220913+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch-1.13.0.dev20220913-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220913-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch_mlir-20220913.595-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220913.595-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch_mlir-20220913.595-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220913.595-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220913.595/torch_mlir-20220913.595-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220913.595-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch-1.13.0.dev20220912%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220912+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch-1.13.0.dev20220912%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220912+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch-1.13.0.dev20220912-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220912-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch_mlir-20220912.594-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220912.594-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch_mlir-20220912.594-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220912.594-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220912.594/torch_mlir-20220912.594-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220912.594-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220911.593/torch-1.13.0.dev20220911%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220911+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220911.593/torch-1.13.0.dev20220911%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220911+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220911.593/torch_mlir-20220911.593-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220911.593-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220911.593/torch_mlir-20220911.593-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220911.593-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch-1.13.0.dev20220910%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220910+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch-1.13.0.dev20220910%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220910+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch-1.13.0.dev20220910-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220910-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch_mlir-20220910.592-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220910.592-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch_mlir-20220910.592-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220910.592-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220910.592/torch_mlir-20220910.592-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220910.592-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch-1.13.0.dev20220909%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220909+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch-1.13.0.dev20220909%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220909+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch-1.13.0.dev20220909-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220909-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch_mlir-20220909.591-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220909.591-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch_mlir-20220909.591-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220909.591-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220909.591/torch_mlir-20220909.591-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220909.591-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch-1.13.0.dev20220908%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220908+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch-1.13.0.dev20220908%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220908+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch-1.13.0.dev20220908-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220908-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch_mlir-20220908.590-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220908.590-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch_mlir-20220908.590-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220908.590-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220908.590/torch_mlir-20220908.590-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220908.590-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch-1.13.0.dev20220907%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220907+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch-1.13.0.dev20220907%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220907+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch-1.13.0.dev20220907-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220907-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch_mlir-20220907.589-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220907.589-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch_mlir-20220907.589-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220907.589-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220907.589/torch_mlir-20220907.589-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220907.589-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch-1.13.0.dev20220905%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220905+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch-1.13.0.dev20220905%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220905+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch-1.13.0.dev20220906-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220906-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch_mlir-20220906.588-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220906.588-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch_mlir-20220906.588-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220906.588-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220906.588/torch_mlir-20220906.588-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220906.588-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch-1.13.0.dev20220905%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220905+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch-1.13.0.dev20220905%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220905+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch-1.13.0.dev20220905-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220905-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch_mlir-20220905.587-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220905.587-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch_mlir-20220905.587-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220905.587-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220905.587/torch_mlir-20220905.587-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220905.587-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch-1.13.0.dev20220904%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220904+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch-1.13.0.dev20220904%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220904+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch-1.13.0.dev20220904-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220904-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch_mlir-20220904.586-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220904.586-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch_mlir-20220904.586-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220904.586-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220904.586/torch_mlir-20220904.586-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220904.586-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch-1.13.0.dev20220903%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220903+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch-1.13.0.dev20220903%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220903+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch-1.13.0.dev20220903-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220903-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch_mlir-20220903.585-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220903.585-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch_mlir-20220903.585-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220903.585-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220903.585/torch_mlir-20220903.585-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220903.585-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch-1.13.0.dev20220902%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220902+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch-1.13.0.dev20220902%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220902+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch-1.13.0.dev20220902-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220902-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch_mlir-20220902.584-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220902.584-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch_mlir-20220902.584-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220902.584-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220902.584/torch_mlir-20220902.584-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220902.584-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220901.583/torch-1.13.0.dev20220901-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220901-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220901.583/torch_mlir-20220901.583-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220901.583-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220831.582/torch-1.13.0.dev20220831-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220831-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220831.582/torch_mlir-20220831.582-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220831.582-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch-1.13.0.dev20220830%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220830+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch-1.13.0.dev20220830%2Bcpu-cp38-cp38-linux_x86_64.whl'>torch-1.13.0.dev20220830+cpu-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch-1.13.0.dev20220830%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220830+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch-1.13.0.dev20220830-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220830-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch_mlir-20220830.581-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220830.581-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch_mlir-20220830.581-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220830.581-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch_mlir-20220830.581-cp38-cp38-linux_x86_64.whl'>torch_mlir-20220830.581-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220830.581/torch_mlir-20220830.581-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220830.581-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch-1.13.0.dev20220829%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220829+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch-1.13.0.dev20220829%2Bcpu-cp38-cp38-linux_x86_64.whl'>torch-1.13.0.dev20220829+cpu-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch-1.13.0.dev20220829%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220829+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch-1.13.0.dev20220829-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220829-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch_mlir-20220829.580-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220829.580-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch_mlir-20220829.580-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220829.580-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch_mlir-20220829.580-cp38-cp38-linux_x86_64.whl'>torch_mlir-20220829.580-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220829.580/torch_mlir-20220829.580-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220829.580-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220829.49/torch-1.13.0.dev20220829-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220829-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220829.49/torch_mlir-20220829.49-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220829.49-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220828.579/torch-1.13.0.dev20220828-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220828-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220828.579/torch_mlir-20220828.579-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220828.579-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220827.578/torch-1.13.0.dev20220827-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220827-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220827.578/torch_mlir-20220827.578-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220827.578-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220826.577/torch-1.13.0.dev20220826-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220826-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220826.577/torch_mlir-20220826.577-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220826.577-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch-1.13.0.dev20220825%2Bcpu-cp310-cp310-linux_x86_64.whl'>torch-1.13.0.dev20220825+cpu-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch-1.13.0.dev20220825%2Bcpu-cp38-cp38-linux_x86_64.whl'>torch-1.13.0.dev20220825+cpu-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch-1.13.0.dev20220825%2Bcpu-cp39-cp39-linux_x86_64.whl'>torch-1.13.0.dev20220825+cpu-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch-1.13.0.dev20220825-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220825-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch_mlir-20220825.48-cp310-cp310-linux_x86_64.whl'>torch_mlir-20220825.48-cp310-cp310-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch_mlir-20220825.48-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220825.48-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch_mlir-20220825.48-cp38-cp38-linux_x86_64.whl'>torch_mlir-20220825.48-cp38-cp38-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/oneshot-20220825.48/torch_mlir-20220825.48-cp39-cp39-linux_x86_64.whl'>torch_mlir-20220825.48-cp39-cp39-linux_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220825.576/torch-1.13.0.dev20220825-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220825-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220825.576/torch_mlir-20220825.576-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220825.576-cp310-cp310-macosx_11_0_universal2.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220824.575/torch-1.13.0.dev20220824-cp310-none-macosx_10_9_x86_64.whl'>torch-1.13.0.dev20220824-cp310-none-macosx_10_9_x86_64.whl</a>
<a href='https://github.com/llvm/torch-mlir/releases/download/snapshot-20220824.575/torch_mlir-20220824.575-cp310-cp310-macosx_11_0_universal2.whl'>torch_mlir-20220824.575-cp310-cp310-macosx_11_0_universal2.whl</a>
</body>
</html>

View File

@ -1,7 +0,0 @@
add_llvm_tool(npcomp-dummy-runner
dummy-runner.cpp
)
target_link_libraries(npcomp-dummy-runner PRIVATE
LLVMSupport
)

View File

@ -1,12 +0,0 @@
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/CommandLine.h"
#include "npcomp/Dummy.h"
using namespace llvm;
int main(int argc, char** argv) {
InitLLVM y(argc, argv);
cl::ParseCommandLineOptions(argc, argv, "Dummy program\n");
llvm::outs() << "Hello world!\n";
return 0;
}

View File

@ -1,43 +0,0 @@
add_subdirectory(npcomp)
################################################################################
# Manage python source files
################################################################################
function (create_symlinks)
# Do nothing if building in-source
if (${CMAKE_CURRENT_BINARY_DIR} STREQUAL ${CMAKE_CURRENT_SOURCE_DIR})
return()
endif()
foreach (path_file ${ARGN})
get_filename_component(folder ${path_file} PATH)
# Create REAL folder
file(MAKE_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/${folder}")
# Delete symlink if it exists
file(REMOVE "${CMAKE_CURRENT_BINARY_DIR}/${path_file}")
# Get OS dependent path to use in `execute_process`
file(TO_NATIVE_PATH "${CMAKE_CURRENT_BINARY_DIR}/${path_file}" link)
file(TO_NATIVE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/${path_file}" target)
if (UNIX)
set(command ln -s ${target} ${link})
else()
set(command cmd.exe /c mklink ${link} ${target})
endif()
execute_process(COMMAND ${command}
RESULT_VARIABLE result
ERROR_VARIABLE output)
if (NOT ${result} EQUAL 0)
message(FATAL_ERROR "Could not create symbolic link for: ${target} --> ${output}")
endif()
endforeach(path_file)
endfunction(create_symlinks)
file(GLOB_RECURSE python_files RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.py)
create_symlinks(${python_files})

View File

@ -1,84 +0,0 @@
################################################################################
# Native extensions
################################################################################
# Normally on unix-like platforms, extensions are built as "MODULE" libraries
# and do not explicitly link to the python shared object. This allows for
# come greater deployment flexibility since the extension will bind to
# symbols in the python interpreter on load. However, it also keeps the
# linker from erroring on undefined symbols, leaving this to (usually obtuse)
# runtime errors. Building in "SHARED" mode with an explicit link to the
# python libraries allows us to build with the expectation of no undefined
# symbols, which is better for development.
# TODO(laurenzo): Windows requires linking against the PYTHON_LIBRARIES
# TODO(laurenzo): OSX requires allowing undefined (-undefined dynamic_lookup)
set(NPCOMP_PYEXT_LINK_MODE SHARED)
set(NPCOMP_PYEXT_LIBADD ${PYTHON_LIBRARIES})
# TODO(laurenzo): Add a config setting to control this.
# set(NPCOMP_PYEXT_LINK_MODE MODULE)
# set(NPCOMP_PYEXT_LIBADD "")
# When building the extension, distinguish between those sources that use
# pybind (and need rtti/exceptions) and those that only use LLVM/MLIR.
# Some of the low-level components do not support mixing RTTI modes and are
# compiled separately for now.
set(extension_target NPCOMPNativePyExt)
set(extension_pybind_sources
native.cpp
mlir_edsc.cpp
)
set(extension_llvm_sources
mlir_init.cpp
)
set_source_files_properties(
${extension_pybind_sources}
PROPERTIES COMPILE_FLAGS
"-frtti -fexceptions")
add_library(${extension_target} ${NPCOMP_PYEXT_LINK_MODE}
${extension_pybind_sources}
${extension_llvm_sources}
)
set_target_properties(${extension_target} PROPERTIES LIBRARY_OUTPUT_DIRECTORY
"${CMAKE_CURRENT_BINARY_DIR}")
set_target_properties(${extension_target} PROPERTIES OUTPUT_NAME native)
set_target_properties(${extension_target} PROPERTIES PREFIX
"${PYTHON_MODULE_PREFIX}")
set_target_properties(${extension_target} PROPERTIES SUFFIX
"${PYTHON_MODULE_EXTENSION}")
# pybind requires binding code to be compiled with -fvisibility=hidden
# Better code can be generated if the entire project compiles that way, but
# that is not enforced here. Instead, include a linker script that explicitly
# hides anything but the PyInit_* symbols, allowing gc to take place.
# TODO(laurenzo): Windows needs a .def file and different flags.
set_target_properties(${extension_target} PROPERTIES CXX_VISIBILITY_PRESET "hidden")
set_target_properties(${extension_target} PROPERTIES LINK_FLAGS
"-Wl,--version-script=${CMAKE_CURRENT_SOURCE_DIR}/unix_version.script")
get_property(dialect_libs GLOBAL PROPERTY MLIR_DIALECT_LIBS)
get_property(conversion_libs GLOBAL PROPERTY MLIR_CONVERSION_LIBS)
llvm_update_compile_flags(${extension_target})
target_link_libraries(${extension_target}
PRIVATE
${dialect_libs}
${conversion_libs}
pybind11::module
LLVMSupport
MLIRAffineToStandard
MLIRAffineTransforms
MLIRDialect
MLIREDSC
MLIREDSCInterface
MLIRIR
MLIRLoopToStandard
MLIRLLVMIR
MLIRPass
MLIRTargetLLVMIR
MLIRTransforms
${NPCOMP_PYEXT_LIBADD}
)

View File

@ -1,4 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

View File

@ -1,536 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""Test for the MLIR EDSC Python bindings"""
import inspect
import sys
from npcomp.native.mlir import edsc as E
from npcomp.utils import test_utils
# Prints `str` prefixed by the current test function name so we can use it in
# Filecheck label directives.
# This is achieved by inspecting the stack and getting the parent name.
def printWithCurrentFunctionName(str):
print(inspect.stack()[1][3])
print(str)
class EdscTest:
def setUp(self):
self.module = E.MLIRModule()
self.boolType = self.module.make_type("i1")
self.i32Type = self.module.make_type("i32")
self.f32Type = self.module.make_type("f32")
self.indexType = self.module.make_index_type()
def testBlockArguments(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
E.constant_index(42)
with E.BlockContext([self.f32Type, self.f32Type]) as b:
b.arg(0) + b.arg(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockArguments
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb{{.*}}(%{{.*}}: f32, %{{.*}}: f32):
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
def testBlockContext(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
cst = E.constant_index(42)
with E.BlockContext():
cst + cst
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContext
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = affine.apply affine_map<() -> (84)>()
def testBlockContextAppend(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
E.constant_index(41)
with E.BlockContext() as b:
blk = b # save block handle for later
E.constant_index(0)
E.constant_index(42)
with E.BlockContext(E.appendTo(blk)):
E.constant_index(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContextAppend
# CHECK: %{{.*}} = constant 41 : index
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
def testBlockContextStandalone(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
blk1 = E.BlockContext()
blk2 = E.BlockContext()
with blk1:
E.constant_index(0)
with blk2:
E.constant_index(56)
E.constant_index(57)
E.constant_index(41)
with blk1:
E.constant_index(1)
E.constant_index(42)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBlockContextStandalone
# CHECK: %{{.*}} = constant 41 : index
# CHECK: %{{.*}} = constant 42 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
# CHECK: ^bb
# CHECK: %{{.*}} = constant 56 : index
# CHECK: %{{.*}} = constant 57 : index
def testBooleanOps(self):
self.setUp()
with self.module.new_function_context("booleans",
[self.boolType for _ in range(4)],
[]) as fun:
i, j, k, l = (fun.arg(x) for x in range(4))
stmt1 = (i < j) & (j >= k)
stmt2 = ~(stmt1 | (k == l))
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBooleanOps
# CHECK: %{{.*}} = cmpi "slt", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = cmpi "sge", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = and %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = cmpi "eq", %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = or %{{.*}}, %{{.*}} : i1
# CHECK: %{{.*}} = constant 1 : i1
# CHECK: %{{.*}} = subi %{{.*}}, %{{.*}} : i1
def testBr(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
with E.BlockContext() as b:
blk = b
E.ret()
E.br(blk)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBr
# CHECK: br ^bb
# CHECK: ^bb
# CHECK: return
def testBrArgs(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
# Create an infinite loop.
with E.BlockContext([self.indexType, self.indexType]) as b:
E.br(b, [b.arg(1), b.arg(0)])
E.br(b, [E.constant_index(0), E.constant_index(1)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBrArgs
# CHECK: %{{.*}} = constant 0 : index
# CHECK: %{{.*}} = constant 1 : index
# CHECK: br ^bb{{.*}}(%{{.*}}, %{{.*}} : index, index)
# CHECK: ^bb{{.*}}(%{{.*}}: index, %{{.*}}: index):
# CHECK: br ^bb{{.*}}(%{{.*}}, %{{.*}} : index, index)
def testBrDeclaration(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
blk = E.BlockContext()
E.br(blk.handle())
with blk:
E.ret()
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testBrDeclaration
# CHECK: br ^bb
# CHECK: ^bb
# CHECK: return
def testCallOp(self):
self.setUp()
callee = self.module.declare_function("sqrtf", [self.f32Type],
[self.f32Type])
with self.module.new_function_context("call", [self.f32Type], []) as fun:
funCst = E.constant_function(callee)
funCst([fun.arg(0)]) + E.constant_float(42., self.f32Type)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testCallOp
# CHECK: func @sqrtf(f32) -> f32
# CHECK: %{{.*}} = constant @sqrtf : (f32) -> f32
# CHECK: %{{.*}} = call_indirect %{{.*}}(%{{.*}}) : (f32) -> f32
def testCondBr(self):
self.setUp()
with self.module.new_function_context("foo", [self.boolType], []) as fun:
with E.BlockContext() as blk1:
E.ret([])
with E.BlockContext([self.indexType]) as blk2:
E.ret([])
cst = E.constant_index(0)
E.cond_br(fun.arg(0), blk1, [], blk2, [cst])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testCondBr
# CHECK: cond_br %{{.*}}, ^bb{{.*}}, ^bb{{.*}}(%{{.*}} : index)
def testConstantAffineExpr(self):
self.setUp()
with self.module.new_function_context("constant_affine", [], []) as fun:
a1 = self.module.affine_dim_expr(0)
a2 = self.module.affine_dim_expr(1)
a3 = a1 + a2 + 3
composedExpr = a3.compose(
self.module.affine_map(2, 0, [
self.module.affine_constant_expr(4),
self.module.affine_constant_expr(7)
]))
printWithCurrentFunctionName(str(fun))
print("constant value : %d" % composedExpr.get_constant_value())
# CHECK-LABEL: testConstantAffineExpr
# CHECK: constant value : 14
def testConstants(self):
self.setUp()
with self.module.new_function_context("constants", [], []) as fun:
E.constant_float(1.23, self.module.make_type("bf16"))
E.constant_float(1.23, self.module.make_type("f16"))
E.constant_float(1.23, self.module.make_type("f32"))
E.constant_float(1.23, self.module.make_type("f64"))
E.constant_int(1, 1)
E.constant_int(123, 8)
E.constant_int(123, 16)
E.constant_int(123, 32)
E.constant_int(123, 64)
E.constant_index(123)
E.constant_function(fun)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testConstants
# CHECK: constant 1.230000e+00 : bf16
# CHECK: constant 1.230470e+00 : f16
# CHECK: constant 1.230000e+00 : f32
# CHECK: constant 1.230000e+00 : f64
# CHECK: constant 1 : i1
# CHECK: constant 123 : i8
# CHECK: constant 123 : i16
# CHECK: constant 123 : i32
# CHECK: constant 123 : index
# CHECK: constant @constants : () -> ()
def testCustom(self):
self.setUp()
with self.module.new_function_context("custom", [self.indexType, self.f32Type],
[]) as fun:
E.op("foo", [fun.arg(0)], [self.f32Type]) + fun.arg(1)
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testCustom
# CHECK: %{{.*}} = "foo"(%{{.*}}) : (index) -> f32
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
def testDictionaryAttributes(self):
self.setUp()
dictionaryAttr = self.module.dictionaryAttr({
"int_0": self.module.integerAttr(self.i32Type, 43),
"int_1": self.module.integerAttr(self.i32Type, 33),
})
f = self.module.declare_function("foo", [], [], dict_attr=dictionaryAttr)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testDictionaryAttributes
# CHECK: func @foo() attributes {dict_attr = {int_0 = 43 : i32, int_1 = 33 : i32}}
def testDivisions(self):
self.setUp()
with self.module.new_function_context(
"division", [self.indexType, self.i32Type, self.i32Type], []) as fun:
# indices only support floor division
fun.arg(0) // E.constant_index(42)
# regular values only support regular division
fun.arg(1) / fun.arg(2)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testDivisions
# CHECK: floordiv 42
# CHECK: divi_signed %{{.*}}, %{{.*}} : i32
def testFunctionArgs(self):
self.setUp()
with self.module.new_function_context("foo", [self.f32Type, self.f32Type],
[self.indexType]) as fun:
pass
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testFunctionArgs
# CHECK: func @foo(%{{.*}}: f32, %{{.*}}: f32) -> index
def testFunctionContext(self):
self.setUp()
with self.module.new_function_context("foo", [], []):
pass
printWithCurrentFunctionName(self.module.get_function("foo"))
# CHECK-LABEL: testFunctionContext
# CHECK: func @foo() {
def testFunctionDeclaration(self):
self.setUp()
boolAttr = self.module.boolAttr(True)
t = self.module.make_memref_type(self.f32Type, [10])
t_llvm_noalias = t({"llvm.noalias": boolAttr})
t_readonly = t({"readonly": boolAttr})
f = self.module.declare_function("foo", [t, t_llvm_noalias, t_readonly], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclaration
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {llvm.noalias = true}, memref<10xf32> {readonly = true})
def testFunctionDeclarationWithAffineAttr(self):
self.setUp()
a1 = self.module.affine_constant_expr(23)
a2 = self.module.affine_constant_expr(44)
a3 = self.module.affine_dim_expr(1)
s0 = self.module.affine_symbol_expr(0)
aMap1 = self.module.affine_map(2, 0, [a1, a2, s0])
aMap2 = self.module.affine_constant_map(42)
aMap3 = self.module.affine_map(
2, 0,
[a1 + a2 * a3, a1 // a3 % a2,
a1.ceildiv(a2), a1 - 2, a2 * 2, -a3])
affineAttr1 = self.module.affineMapAttr(aMap1)
affineAttr2 = self.module.affineMapAttr(aMap2)
affineAttr3 = self.module.affineMapAttr(aMap3)
t = self.module.make_memref_type(self.f32Type, [10])
t_with_attr = t({
"affine_attr_1": affineAttr1,
"affine_attr_2": affineAttr2,
"affine_attr_3": affineAttr3,
})
f = self.module.declare_function("foo", [t, t_with_attr], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithAffineAttr
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {affine_attr_1 = affine_map<(d0, d1) -> (23, 44, s0)>, affine_attr_2 = affine_map<() -> (42)>, affine_attr_3 = affine_map<(d0, d1) -> (d1 * 44 + 23, (23 floordiv d1) mod 44, 1, 21, 88, -d1)>})
def testFunctionDeclarationWithArrayAttr(self):
self.setUp()
arrayAttr = self.module.arrayAttr([
self.module.integerAttr(self.i32Type, 43),
self.module.integerAttr(self.i32Type, 33),
])
t = self.module.make_memref_type(self.f32Type, [10])
t_with_attr = t({"array_attr": arrayAttr})
f = self.module.declare_function("foo", [t, t_with_attr], [])
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithArrayAttr
# CHECK: func @foo(memref<10xf32>, memref<10xf32> {array_attr = [43 : i32, 33 : i32]})
def testFunctionDeclarationWithFloatAndStringAttr(self):
self.setUp()
float_attr = self.module.floatAttr(23.3)
string_attr = self.module.stringAttr("TEST_STRING")
f = self.module.declare_function(
"foo", [], [], float_attr=float_attr, string_attr=string_attr)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionDeclarationWithFloatAndStringAttr
# CHECK: func @foo() attributes {float_attr = 2.330000e+01 : f32, string_attr = "TEST_STRING"}
def testFunctionMultiple(self):
self.setUp()
with self.module.new_function_context("foo", [], []):
pass
with self.module.new_function_context("foo", [], []):
E.constant_index(0)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testFunctionMultiple
# CHECK: func @foo()
# CHECK: func @foo_0()
# CHECK: %{{.*}} = constant 0 : index
def testIndexCast(self):
self.setUp()
with self.module.new_function_context("testIndexCast", [], []):
index = E.constant_index(0)
E.index_cast(index, self.i32Type)
printWithCurrentFunctionName(str(self.module))
# CHECK-LABEL: testIndexCast
# CHECK: index_cast %{{.*}} : index to i32
def testIndexedValue(self):
self.setUp()
memrefType = self.module.make_memref_type(self.f32Type, [10, 42])
with self.module.new_function_context("indexed", [memrefType],
[memrefType]) as fun:
A = E.IndexedValue(fun.arg(0))
cst = E.constant_float(1., self.f32Type)
with E.LoopNestContext(
[E.constant_index(0), E.constant_index(0)],
[E.constant_index(10), E.constant_index(42)], [1, 1]) as (i, j):
A.store([i, j], A.load([i, j]) + cst)
E.ret([fun.arg(0)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testIndexedValue
# CHECK: affine.for
# CHECK: affine.for
# CHECK: %{{.*}} affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x42xf32>
# CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
# CHECK: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x42xf32>
def testLoopContext(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
lhs = E.constant_index(0)
rhs = E.constant_index(42)
with E.LoopContext(lhs, rhs, 1) as i:
lhs + rhs + i
with E.LoopContext(rhs, rhs + rhs, 2) as j:
x = i + j
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testLoopContext
# CHECK: affine.for
# CHECK: {{.*}} = affine.apply affine_map<() -> (42)>()
# CHECK: {{.*}} = affine.apply affine_map<(d0) -> (d0 + 42)>({{.*}})
# CHECK: {{.*}} = affine.apply affine_map<() -> (84)>()
# CHECK: affine.for {{.*}} = affine_map<(d0) -> (d0)>(%c42) to affine_map<(d0) -> (d0)>({{.*}}) step 2 {
# CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> (d0 + d1)>({{.*}}, {{.*}})
def testLoopNestContext(self):
self.setUp()
with self.module.new_function_context("foo", [], []) as fun:
lbs = [E.constant_index(i) for i in range(4)]
ubs = [E.constant_index(10 * i + 5) for i in range(4)]
with E.LoopNestContext(lbs, ubs, [1, 3, 5, 7]) as (i, j, k, l):
i + j + k + l
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testLoopNestContext
# CHECK: affine.for
# CHECK: affine.for
# CHECK: affine.for
# CHECK: affine.for
# CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> (d0 + d1)>({{.*}}, {{.*}})
# CHECK: {{.*}} = affine.apply affine_map<(d0, d1, d2) -> (d0 + d1 + d2)>({{.*}}, {{.*}}, {{.*}})
# CHECK: {{.*}} = affine.apply affine_map<(d0, d1, d2, d3) -> (d0 + d1 + d2 + d3)>({{.*}}, {{.*}}, {{.*}}, {{.*}})
def testMLIRFunctionCreation(self):
self.setUp()
module = E.MLIRModule()
t = module.make_type("f32")
m = module.make_memref_type(t, [3, 4, -1, 5])
printWithCurrentFunctionName(str(t))
print(str(m))
print(str(module.make_function("copy", [m, m], [])))
print(str(module.make_function("sqrtf", [t], [t])))
# CHECK-LABEL: testMLIRFunctionCreation
# CHECK: f32
# CHECK: memref<3x4x?x5xf32>
# CHECK: func @copy(%{{.*}}: memref<3x4x?x5xf32>, %{{.*}}: memref<3x4x?x5xf32>) {
# CHECK: func @sqrtf(%{{.*}}: f32) -> f32
def testMLIRScalarTypes(self):
self.setUp()
module = E.MLIRModule()
printWithCurrentFunctionName(str(module.make_type("bf16")))
print(str(module.make_type("f16")))
print(str(module.make_type("f32")))
print(str(module.make_type("f64")))
print(str(module.make_type("i1")))
print(str(module.make_type("i8")))
print(str(module.make_type("i32")))
print(str(module.make_type("i123")))
print(str(module.make_type("index")))
# CHECK-LABEL: testMLIRScalarTypes
# CHECK: bf16
# CHECK: f16
# CHECK: f32
# CHECK: f64
# CHECK: i1
# CHECK: i8
# CHECK: i32
# CHECK: i123
# CHECK: index
def testMatrixMultiply(self):
self.setUp()
memrefType = self.module.make_memref_type(self.f32Type, [32, 32])
with self.module.new_function_context("matmul",
[memrefType, memrefType, memrefType],
[]) as fun:
A = E.IndexedValue(fun.arg(0))
B = E.IndexedValue(fun.arg(1))
C = E.IndexedValue(fun.arg(2))
c0 = E.constant_index(0)
c32 = E.constant_index(32)
with E.LoopNestContext([c0, c0, c0], [c32, c32, c32],
[1, 1, 1]) as (i, j, k):
C.store([i, j], A.load([i, k]) * B.load([k, j]))
E.ret([])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testMatrixMultiply
# CHECK: affine.for
# CHECK: affine.for
# CHECK: affine.for
# CHECK-DAG: %{{.*}} = affine.load
# CHECK-DAG: %{{.*}} = affine.load
# CHECK: %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
# CHECK: affine.store
# CHECK-SAME: memref<32x32xf32>
def testRet(self):
self.setUp()
with self.module.new_function_context("foo", [],
[self.indexType, self.indexType]) as fun:
c42 = E.constant_index(42)
c0 = E.constant_index(0)
E.ret([c42, c0])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testRet
# CHECK: %{{.*}} = constant 42 : index
# CHECK: %{{.*}} = constant 0 : index
# CHECK: return %{{.*}}, %{{.*}} : index, index
def testSelectOp(self):
self.setUp()
with self.module.new_function_context("foo", [self.boolType],
[self.i32Type]) as fun:
a = E.constant_int(42, 32)
b = E.constant_int(0, 32)
E.ret([E.select(fun.arg(0), a, b)])
printWithCurrentFunctionName(str(fun))
# CHECK-LABEL: testSelectOp
# CHECK: %{{.*}} = select %{{.*}}, %{{.*}}, %{{.*}} : i32
def testType(self):
self.setUp()
printWithCurrentFunctionName("")
with self.module.new_function_context(
"foo", [self.module.make_memref_type(self.f32Type, [10])], []) as fun:
c42 = E.constant_int(42, 32)
print(str(c42.type()))
print(str(fun.arg(0).type()))
# CHECK-LABEL: testType
# CHECK: i32
# CHECK: memref<10xf32>
# Until python 3.6 this cannot be used because the order in the dict is not the
# order of method declaration.
def runTests():
def isTest(attr):
return inspect.ismethod(attr) and "EdscTest.setUp " not in str(attr)
edscTest = EdscTest()
tests = sorted(
filter(isTest, (getattr(edscTest, attr) for attr in dir(edscTest))),
key=lambda x: str(x))
for test in tests:
print("--> Running test:", test.__name__, file=sys.stderr)
test()
if __name__ == "__main__":
test_utils.run_under_filecheck(__file__, runTests)

View File

@ -1,199 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import re
import numpy as np
from ..native.mlir import edsc
from ..exporter import *
from ..types import *
class TracingError(Exception):
pass
class EmitterRegistry:
def __init__(self):
self._func_emitters = {}
def register(self, func, emitter):
self._func_emitters[func] = emitter
def lookup(self, func):
return self._func_emitters.get(func)
def register_ufunc(self, ufunc, function_name):
def emitter(pft, method, *inputs, **kwargs):
if method == "__call__":
if kwargs:
raise TracingError("Generic ufunc with kwargs not supported %r" % (
ufunc,))
# Map inputs to TracedArrays.
# TODO: Process captures, promotions, etc.
op_inputs = []
for py_input in inputs:
if not isinstance(py_input, TracedArray):
raise TracingError("Unsupported ufunc input: %r", (py_input,))
op_input = pft.get_traced_array_value(py_input)
if op_input is None:
raise TracingError("Unregistered traced array: %r", (py_input,))
op_inputs.append(op_input)
# Emit op.
mlir_m = pft.mlir_module
op_result_types = [mlir_m.make_type("tensor<*x!numpy.any_dtype>")]
op_result = edsc.op("numpy.generic_ufunc", op_inputs, op_result_types,
ufunc_name=mlir_m.stringAttr(function_name))
# Wrap returns.
return_array = TracedArray(pft)
pft.set_traced_array(return_array, op_result)
return return_array
raise TracingError("Unsupported ufunc method %r:%r" % (ufunc, method,))
self.register(ufunc, emitter)
EMITTER_REGISTRY = EmitterRegistry()
EMITTER_REGISTRY.register_ufunc(np.multiply, "numpy.multiply")
EMITTER_REGISTRY.register_ufunc(np.add, "numpy.add")
class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
"""An array that traces its operations."""
def __init__(self, pft: "PyFuncTrace"):
self._pft = pft
def __hash__(self):
return id(self)
def __repr__(self):
return "<TracedArray %d>" % id(self)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
emitter = EMITTER_REGISTRY.lookup(ufunc)
if emitter is None:
return NotImplemented
result = emitter(self._pft, method, *inputs, **kwargs)
return result
class PyFuncTrace:
r"""Creates an MLIR function from an unwrapped python function.
# TODO: These constraints are too verbose and should be coming in by
# example.
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
... return a * b + a
>>> exp = Exporter()
>>> exp.simple_mul = simple_mul
>>> exp.simple_mul.sig.args["a"] += Shape(1, 4)
>>> exp.simple_mul.sig.args["a"] += DynamicDim(0)
>>> exp.simple_mul.sig.args["a"] += DType(np.float32)
>>> exp.simple_mul.sig.args["b"] += Shape(1)
>>> exp.simple_mul.sig.args["b"] += DType(np.float32)
>>> exp.simple_mul.sig.result += Shape(1, 4)
>>> exp.simple_mul.sig.result += DynamicDim(0)
>>> exp.simple_mul.sig.result += DType(np.float32)
>>> pft = PyFuncTrace(exp.simple_mul)
>>> pft.trace()
>>> print(pft.mlir_module.get_ir().strip())
module {
func @simple_mul(%arg0: tensor<?x4xf32>, %arg1: tensor<1xf32>) -> tensor<?x4xf32> {
%0 = "numpy.generic_ufunc"(%arg0, %arg1) {ufunc_name = "numpy.multiply"} : (tensor<?x4xf32>, tensor<1xf32>) -> tensor<*x!numpy.any_dtype>
%1 = "numpy.generic_ufunc"(%0, %arg0) {ufunc_name = "numpy.add"} : (tensor<*x!numpy.any_dtype>, tensor<?x4xf32>) -> tensor<*x!numpy.any_dtype>
%2 = "numpy.narrow"(%1) : (tensor<*x!numpy.any_dtype>) -> tensor<?x4xf32>
return %2 : tensor<?x4xf32>
}
}
"""
__slots__ = [
"epf",
"mlir_ctx",
"mlir_fun",
"mlir_module",
"mlir_result_types",
"_args_array_params",
"_traced_arrays",
"_python_args",
"_result_array_params",
]
def __init__(self, epf: ExportPyFunction):
self.mlir_module = edsc.MLIRModule()
self.epf = epf
self._traced_arrays = {} # Mapping of TracedArray to current consumer value
self._validate()
# Extract ArrayParams for all args and results.
self._args_array_params = [
ArrayParams.from_constraints(arg.constraints)
for arg in self.epf.sig.args]
self._python_args = [None] * len(self._args_array_params)
self._result_array_params = ArrayParams.from_constraints(
self.epf.sig.result.constraints)
# Create the MLIR function.
self.mlir_fun, self.mlir_result_types = self._create_mlir_function()
self.mlir_ctx = self.mlir_module.function_context(self.mlir_fun)
self._create_trace_roots()
def set_traced_array(self, traced_array, value_handle):
"""Sets the current SSA value for a traced_array."""
assert isinstance(traced_array, TracedArray)
self._traced_arrays[traced_array] = value_handle
def get_traced_array_value(self, traced_array):
return self._traced_arrays.get(traced_array)
def trace(self):
# TODO: General argument merging
with self.mlir_ctx:
py_results = (self.epf.pyfunc(*self._python_args),)
if len(py_results) != len(self.mlir_result_types):
raise TracingError(
"Traced function returned != %d results: %r" % (
len(self.mlir_result_types), py_results,))
# Narrow all results to the declared return types.
return_operands = []
for py_result, mlir_result_type in zip(py_results, self.mlir_result_types):
mlir_result = self.get_traced_array_value(py_result)
if mlir_result is None:
raise TracingError("Unregistered traced array: %r", (py_input,))
# narrow to declared result type.
return_operands.append(edsc.op(
"numpy.narrow", [mlir_result], [mlir_result_type]))
edsc.ret(return_operands)
def _validate(self):
if not all(arg.type_class == TypeClass.NdArray
for arg in self.epf.sig.args):
raise NotImplementedError("Non NdArray args: %r" % (self.epf.sig.args,))
if not self.epf.sig.result.type_class == TypeClass.NdArray:
raise NotImplementedError("Non NdArray result: %r" % (
self.epf.sig.result,))
def _create_mlir_function(self):
mlir_m = self.mlir_module
epf = self.epf
f_args = [mlir_m.make_type(ap.mlir_tensor_type_asm)
for ap in self._args_array_params]
f_results = [mlir_m.make_type(
self._result_array_params.mlir_tensor_type_asm)]
return mlir_m.make_function(epf.__name__, f_args, f_results), f_results
def _create_trace_roots(self):
for index, ap in enumerate(self._args_array_params):
if ap is not None:
ta = TracedArray(self)
self.set_traced_array(ta, self.mlir_fun.arg(index))
self._python_args[index] = ta
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,274 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import inspect
import numpy as np
from typing import Optional
from .types import *
__all__ = [
"Exporter",
"ExportFunction",
"ExportPyFunction",
]
def _value_type_from_annotation(annotation):
# TODO: This is just enough to recognize ndarrays.
if annotation is np.ndarray:
return ValueType(TypeClass.NdArray)
else:
return ValueType()
def _signature_from_pyfunc(pyfunc):
pysig = inspect.signature(pyfunc)
sig = Signature(len(pysig.parameters))
# Arguments
for i, param in enumerate(pysig.parameters.values()):
if param.kind not in (
param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
raise ValueError(
"Currently only positional function signature are supported")
sig.arg_names[i] = param.name
annot = param.annotation
if annot is param.empty: continue
sig.args[i] = _value_type_from_annotation(annot)
# Result
if pysig.return_annotation is not pysig.empty:
sig.result = _value_type_from_annotation(pysig.return_annotation)
return sig
class ExportFunction:
"""Base class for functions that can be exported."""
__slots__ = ["_sig"]
def __init__(self, sig=None):
self._sig = sig if sig else Signature()
@property
def sig(self):
return self._sig
def __repr__(self):
return "def %r" % self._sig
class ExportPyFunction(ExportFunction):
"""Wraps a fully specialized python function that is staged for export.
At different phases of compilation, the wrapped function will be
treated differently. At the initial phase, it is just a pass-through
and provides introspection capabilities.
Basic access:
>>> def simple(a, b): return a + b
>>> ExportPyFunction(simple)
pydef simple(a: Any, b: Any) -> Any
>>> def mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
... return a * b
>>> ExportPyFunction(mul)
pydef mul(a: NdArray, b: NdArray) -> NdArray
>>> ExportPyFunction(mul).sig
(a: NdArray, b: NdArray) -> NdArray
Manipulating the signature:
>>> f = ExportPyFunction(mul)
>>> f.sig.args["a"] += Rank(2)
>>> f.sig.args["b"] = "Any"
>>> f.sig.result += Shape(1, 2)
>>> f
pydef mul(a: NdArray[Rank(2)], b: Any) -> NdArray[Shape(1, 2)]
"""
__slots__ = ExportFunction.__slots__ + ["_pyfunc", "__name__"]
def __init__(self, pyfunc, name=None):
super().__init__(sig=_signature_from_pyfunc(pyfunc))
assert (hasattr(pyfunc, "__call__")
and hasattr(pyfunc, "__name__")), "Not a python function"
self._pyfunc = pyfunc
self.__name__ = name if name else pyfunc.__name__
@property
def pyfunc(self):
return self._pyfunc
def __repr__(self):
return "pydef %s%r" % (self.__name__, self._sig)
def __call__(self, *args, **kwargs):
return self._pyfunc(*args, **kwargs)
class _ExpandoNode:
"""Expando object that can be indexed into to construct a namespace."""
__slots__ = [
"_parent", "_services", "_local_name", "_parent_name",
"_children", "_attached"]
def __init__(self, parent: Optional["_ExpandoNode"],
services: "_Services",
local_name: str):
super().__init__()
object.__setattr__(self, "_parent", parent)
object.__setattr__(self, "_services", services)
object.__setattr__(self, "_local_name", local_name)
object.__setattr__(self, "_parent_name",
parent._get_full_name() if parent else "")
object.__setattr__(self, "_children", {})
object.__setattr__(self, "_attached", parent is None)
def _attach(self):
if self._attached: return
if self._local_name in self._parent._children:
raise KeyError("Cannot re-assign '%s'" % (self._get_full_name(),))
self._parent._attach()
self._parent._children[self._local_name] = self
object.__setattr__(self, "_attached", True)
def _get_full_name(self):
if not self._parent: return "" # Root is always empty name.
full_name = (self._parent_name + "." + self._local_name
if self._parent_name else self._local_name)
return full_name
def _get_child_name(self, child_local_name):
full_name = self._get_full_name()
if not full_name: return child_local_name
else: return full_name + "." + child_local_name
def __repr__(self):
return "Namespace(\"%s\")" % (self._get_full_name())
def __contains__(self, key):
return key in self._children
def __getitem__(self, key):
key = str(key)
existing = self._children.get(key)
if existing is not None: return existing
# Speculatively create a child expando.
child = _ExpandoNode(self, self._services, key)
return child
def __setitem__(self, key, value):
if not inspect.isfunction(value):
raise TypeError("Cannot assign value to an exporter: %r" % (value,))
child_name = self._get_child_name(key)
if key in self._children:
# TODO: Relax this once __delitem__ is implemented.
raise KeyError("Cannot re-assign '%s'" % (child_name))
self._attach()
self._children[key] = self._services.wrap_function(value, child_name)
def __getattr__(self, name):
return self[name]
def __setattr__(self, name, value):
try:
self[name] = value
except KeyError as e:
raise AttributeError(str(e)) from None
def __dir__(self):
return self._children.keys()
class _Services:
"""Services and support for the Exporter.
Exporters are user objects, so most of the functional components are
contained in the associated _Services object.
"""
def wrap_function(self, f, full_name):
if isinstance(f, ExportFunction): return f
# TODO: Need to scan through providers and choose.
return ExportPyFunction(f, name=full_name)
class Exporter:
"""Top-level UI object for assembling a program for export.
The exporter defines an open namespace of functions to be exported.
Logically, it can be thought of as a dict-of-dicts that is populated
by assignment of functions to leaves. The act of assigning a function
captures it as an ExportFunction and binds it to the exporter. This
ExportFunction exposes the object model that can be manipulated to
refine the compiled form. By default, any calls to such functions will
delegate to the original function, capturing examples that constrain
and allow further optimizations on the compiled form.
There are several reserved names that can not have functions bound
to them with the dot notation, but can still be referenced by subscripting
if necessary:
TODO: Reserved names. 'captures', etc.
>>> exp = Exporter()
>>> exp
Exporter()
Creating namespaces and functions with attribute access:
>>> exp = Exporter()
>>> exp.ns1
Namespace("ns1")
>>> "ns1" in exp # Not yet attached
False
>>> exp.ns1.ns2.f = lambda x: x
>>> exp.ns1.ns2 # Should be attached
Namespace("ns1.ns2")
>>> exp.ns1.ns2.f
pydef ns1.ns2.f(x: Any) -> Any
Via index access:
>>> exp = Exporter()
>>> exp["ns1"]["f"] = lambda x: x
>>> dir(exp["ns1"])
['f']
>>> exp["ns1"]["f"]
pydef ns1.f(x: Any) -> Any
Illegal access:
>>> exp = Exporter()
>>> exp.ns1.ns2.f = lambda x: x
>>> exp.ns1.ns2.f = lambda x: x
Traceback (most recent call last):
...
AttributeError: "Cannot re-assign 'ns1.ns2.f'"
>>> exp.ns1 = lambda x: x
Traceback (most recent call last):
...
AttributeError: "Cannot re-assign 'ns1'"
"""
__slots__ = ["_root", "_services"]
def __init__(self):
super().__init__()
services = _Services()
object.__setattr__(self, "_root", _ExpandoNode(None, services, ""))
object.__setattr__(self, "_services", services)
def __repr__(self):
return "Exporter()"
def __contains__(self, key):
return key in self._root
def __getitem__(self, key):
return self._root[key]
def __setitem__(self, key, value):
self._root[key] = value
def __getattr__(self, name):
return getattr(self._root, name)
def __setattr__(self, name, value):
setattr(self._root, name, value)
if __name__ == "__main__":
import doctest
doctest.testmod()

File diff suppressed because it is too large Load Diff

View File

@ -1,19 +0,0 @@
//===- mlir_init.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/InitAllDialects.h"
namespace npcomp {
namespace python {
void npcompMlirInitialize() {
::mlir::registerAllDialects();
}
} // namespace python
} // namesapce npcomp

View File

@ -1,35 +0,0 @@
//===- native.cpp - MLIR Python bindings ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cstddef>
#include <unordered_map>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <pybind11/stl.h>
namespace py = pybind11;
namespace npcomp {
namespace python {
// Externs
void npcompMlirInitialize();
void defineMlirEdscModule(py::module m);
PYBIND11_MODULE(native, m) {
npcompMlirInitialize();
m.doc() = "Npcomp native python bindings";
auto mlir_m = m.def_submodule("mlir", "MLIR interop");
auto mlir_edsc_m = mlir_m.def_submodule("edsc");
defineMlirEdscModule(mlir_edsc_m);
}
} // namespace python
} // namespace npcomp

View File

@ -1,2 +0,0 @@
from . import native
print(native.__doc__)

View File

@ -1,119 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from typing import Optional
import contextlib
import threading
import numpy as np
class TraceContext:
"""Context for intercepting array traces.
Context manager:
----------------
Instances act as context managers, the inner-most of which can be
queried with current() or optional_current().
>>> with TraceContext(desc=1) as tc:
... print(tc)
... print(TraceContext.current())
<TraceContext 1>
<TraceContext 1>
>>> print(TraceContext.optional_current())
None
>>> TraceContext.current()
Traceback (most recent call last):
...
RuntimeError: No active TraceContext
Unique ids:
-----------
Many things in tracing require a context-local id.
>>> with TraceContext() as tc:
... print(tc.get_next_id())
... print(tc.get_next_id())
1
2
"""
_local = threading.local()
def __init__(self, desc=None):
self._desc = desc
self._next_id = 1
def get_next_id(self):
"""Gets the next unique id for the context."""
rv = self._next_id
self._next_id += 1
return rv
@classmethod
def _get_context_stack(cls):
try:
return cls._local.s
except AttributeError:
cls._local.s = []
return cls._local.s
@classmethod
def optional_current(cls) -> Optional["TraceContext"]:
s = cls._get_context_stack()
if s:
return s[-1]
else:
return None
@classmethod
def current(cls) -> "TraceContext":
c = cls.optional_current()
if c is None:
raise RuntimeError("No active TraceContext")
return c
def __enter__(self):
s = self._get_context_stack()
s.append(self)
return self
def __exit__(self, exc_type, exc_value, traceback):
s = self._get_context_stack()
s.pop()
def __repr__(self):
return "<TraceContext %r>" % self._desc
class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
"""An array that traces its operations.
Unique ids:
-----------
>>> tc = TraceContext()
>>> TracedArray(tc=tc)
<TracedArray 1>
>>> TracedArray(tc=tc)
<TracedArray 2>
"""
def __init__(self, tc: Optional[TraceContext] = None):
self._tc = tc if tc is not None else TraceContext.current()
self._uid = self._tc.get_next_id()
@property
def uid(self):
return self._uid
def __repr__(self):
return "<TracedArray %d>" % self._uid
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return NotImplemented
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,117 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import re
import numpy as np
from . import context
from ..native.mlir import edsc
def _map_typing_to_mlir_type(mlir_m, typing_annot):
"""Maps a typing annotation to an MLIR type.
Args:
mlir_m: MLIRModule.
typing_annot: Value for an __annotations__ entry.
Returns:
MLIR type or None if not mappable.
"""
if typing_annot is np.ndarray:
return mlir_m.make_type("tensor<*x!numpy.any_dtype>")
return None
class GenericFunctionTrace:
"""Represents a trace of a 'generic' python function in progress."""
def __init__(self, mlir_m, mlir_f):
self._mlir_m = mlir_m
self._mlir_f = mlir_f
@property
def mlir_module(self):
return self._mlir_m
@property
def mlir_function(self):
return self._mlir_f
@classmethod
def from_typed_pyfunc(cls, mlir_m, pyfunc, name_in_module=None):
"""Creates a generic function trace from a pyfunc with type annotations.
This is a relatively limited mechanism which relies on typing annotations
for arguments and results and supports a relatively limited amount of
variation.
Examples:
* Generic ndarrays:
>>> m = edsc.MLIRModule()
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
... return a * b
>>> gft = GenericFunctionTrace.from_typed_pyfunc(m, simple_mul)
>>> ir = gft.mlir_module.get_ir()
>>> print(re.findall("func @simple_mul.+", ir)[0])
func @simple_mul$$generic(%arg0: tensor<*x!numpy.any_dtype> {py_name = "a"}, %arg1: tensor<*x!numpy.any_dtype> {py_name = "b"}) -> tensor<*x!numpy.any_dtype> attributes {py_ftype = "generic_trace", py_name = "simple_mul"} {
* None types must be annotated:
>>> m = edsc.MLIRModule()
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> None:
... return a * b
>>> gft = GenericFunctionTrace.from_typed_pyfunc(m, simple_mul)
>>> ir = gft.mlir_module.get_ir()
>>> print(re.findall("func @simple_mul.+", ir)[0])
func @simple_mul$$generic(%arg0: tensor<*x!numpy.any_dtype> {py_name = "a"}, %arg1: tensor<*x!numpy.any_dtype> {py_name = "b"}) attributes {py_ftype = "generic_trace", py_name = "simple_mul"} {
Args:
mlir_m: An MLIRModule.
pyfunc: A python function to transform.
Returns:
A new GenericFunctionTrace.
"""
if name_in_module is None:
name_in_module = pyfunc.__name__ + "$$generic"
code = pyfunc.__code__
# Process arguments.
f_args = []
for i in range(code.co_argcount):
arg_name = code.co_varnames[i]
arg_annot = pyfunc.__annotations__.get(arg_name)
if arg_annot is None:
raise ValueError("Function %s arg %d is missing a typing annotation" % (
pyfunc.__name__, i))
arg_type = _map_typing_to_mlir_type(mlir_m, arg_annot)
if arg_type is None:
raise ValueError("Function %s arg %d is not a supported type" % (
pyfunc.__name__, i))
arg_type = arg_type({
"py_name": mlir_m.stringAttr(arg_name),
})
f_args.append(arg_type)
# Process results.
f_results = []
if "return" not in pyfunc.__annotations__:
raise ValueError("Un-annotated function returns not yet supported")
return_annot = pyfunc.__annotations__["return"]
if return_annot is not None:
return_type = _map_typing_to_mlir_type(mlir_m, return_annot)
if return_type is None:
raise ValueError("Function %s return type %r is not supported" % (
pyfunc.__name__, return_annot))
f_results.append(return_type)
mlir_f = mlir_m.make_function(
name_in_module, f_args, f_results,
py_ftype=mlir_m.stringAttr("generic_trace"),
py_name=mlir_m.stringAttr(pyfunc.__name__))
return GenericFunctionTrace(mlir_m, mlir_f)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,695 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from collections import namedtuple
from enum import Enum
import numpy as np
__all__ = [
"Unspec",
"ArrayConstraint",
"ArrayParams",
"DType",
"DimFlag",
"DimFlagEnum",
"DynamicDim",
"Rank",
"Shape",
"Signature",
"TypeClass",
"TypeConstraints",
"ValueType",
]
# TODO: All supported types
_DTYPE_TO_ASM_DICT = {
np.bool: "i1", # TODO: May need a custom type to signify 8bit storage
np.int8: "s8",
np.int16: "s16",
np.int32: "s32",
np.int64: "s64",
np.float32: "f32",
np.float64: "f64",
}
def _dtype_to_mlir_asm(dtype):
return _DTYPE_TO_ASM_DICT.get(dtype)
class _LiterateEnum(Enum):
"""An enum that can be parsed/printed based on its name.
>>> class SampleEnum(_LiterateEnum):
... Red = 1
... Blue = 2
>>> SampleEnum.Red
Red
>>> SampleEnum.parse("Red")
Red
>>> SampleEnum.parse("Mauve")
Traceback (most recent call last):
...
ValueError: Cannot parse SampleEnum 'Mauve'
>>> SampleEnum.parse("parse")
Traceback (most recent call last):
...
ValueError: Cannot parse SampleEnum 'parse'
>>> SampleEnum.parse(None)
Traceback (most recent call last):
...
ValueError: Cannot parse SampleEnum None
>>> SampleEnum.parse(1.0)
Traceback (most recent call last):
...
ValueError: Cannot parse SampleEnum 1.0
"""
@classmethod
def parse(cls, v):
if isinstance(v, cls): return v
if not v or not isinstance(v, str) or v[0] == '_' or not hasattr(cls, v):
raise ValueError("Cannot parse %s %r" % (
cls.__name__.split(".")[-1], v,))
value = getattr(cls, v)
if not isinstance(value, cls):
raise ValueError("Cannot parse %s %r" % (
cls.__name__.split(".")[-1], v,))
return value
def __repr__(self):
return self.name
# Special "unspecified" value that we use throughout.
class _Unspec:
__slots__ = []
def __str__(self):
return "Unspec"
def __repr__(self):
return "Unspec"
Unspec = _Unspec()
class TypeClass(_LiterateEnum):
"""Top level types in the npcomp language."""
Any = 0
NdArray = 1
class ValueType:
"""The type a value can take in the npcomp language.
Types of values in npcomp are always being refined and are therefore
mutable. Instances represent the type derived for a single value, not a
concept of "typeness" generally.
>>> ValueType()
Any
>>> ValueType('NdArray')
NdArray
>>> ValueType('NdArray', DType(np.float32), Rank(2))
NdArray[DType(float32), Rank(2)]
>>> vt = ValueType('NdArray')
>>> vt += Rank(3)
>>> vt += DynamicDim(1)
>>> vt
NdArray[Rank(3), DimFlag(Dynamic, (1,))]
>>> vt = ValueType()
>>> vt.type_class = 'NdArray'
>>> vt
NdArray
"""
__slots__ = ["_constraints", "_type_class"]
def __init__(self, type_class=TypeClass.Any, *constraints):
super().__init__()
self._type_class = TypeClass.parse(type_class)
self._constraints = TypeConstraints(constraints)
def __iadd__(self, constraint):
assert isinstance(constraint, TypeConstraint), (
"Can only add constraints to a ValueType")
self._constraints.append(constraint)
return self
def __repr__(self):
if not self._constraints:
return repr(self._type_class)
return "%r[%s]" % (self._type_class,
", ".join([repr(c) for c in self._constraints]))
@property
def type_class(self):
return self._type_class
@type_class.setter
def type_class(self, type_class):
self._type_class = TypeClass.parse(type_class)
@property
def constraints(self):
return self._constraints
class ValueTypeList:
"""Models a list of ValueTypes.
>>> v3 = ValueTypeList(3)
>>> v3
(Any, Any, Any)
>>> v3[1]
Any
>>> v3[2] = 'NdArray'
>>> v3
(Any, Any, NdArray)
>>> v3[2] += Rank(2)
>>> v3
(Any, Any, NdArray[Rank(2)])
With names:
>>> v3 = ValueTypeList(3, [None, "b", None])
>>> v3[1] = 'NdArray'
>>> v3["b"]
NdArray
>>> v3["b"] = 'Any'
>>> v3
(Any, Any, Any)
"""
__slots__ = ["_list", "_names"]
def __init__(self, arity=0, names=None):
self._list = [ValueType() for _ in range(arity)]
self._names = names
def _key_to_index(self, key):
if isinstance(key, str):
# Scan for the index.
if self._names:
for i, n in enumerate(self._names):
if n == key: return i
raise KeyError("Unknown key '%s'" % key)
return key
def __getitem__(self, key):
return self._list[self._key_to_index(key)]
def __setitem__(self, key, value):
if not isinstance(value, ValueType):
value = ValueType(value)
self._list[self._key_to_index(key)] = value
def __iter__(self):
return self._list.__iter__()
def __repr__(self):
return "(%s)" % (", ".join(repr(t) for t in self._list),)
class Signature:
"""A function signature.
This currently only models a linear list of positional arguments and
assumes that multiple results will be represented by some form of tuple
type.
>>> Signature()
() -> Any
>>> Signature(2)
(Any, Any) -> Any
>>> s = Signature(2)
>>> s.args[1] = 'NdArray'
>>> s.args[1] += Rank(2)
>>> s
(Any, NdArray[Rank(2)]) -> Any
>>> s.result = 'NdArray'
>>> s.result += Rank(3)
>>> s
(Any, NdArray[Rank(2)]) -> NdArray[Rank(3)]
>>> s.arg_names[0] = 'a'
>>> s.arg_names[1] = 'b'
>>> s
(a: Any, b: NdArray[Rank(2)]) -> NdArray[Rank(3)]
"""
__slots__ = ["_args", "_arg_names", "_result"]
def __init__(self, arity=0):
super().__init__()
self._result = ValueType()
self._arg_names = [None] * arity
self._args = ValueTypeList(arity, names=self._arg_names)
@property
def args(self):
return self._args
@property
def arg_names(self):
return self._arg_names
@property
def result(self):
return self._result
@result.setter
def result(self, value):
if not isinstance(value, ValueType):
value = ValueType(value)
self._result = value
def __repr__(self):
args_repr = "(%s)" % (
", ".join(
((n + ": " + repr(t)) if n else repr(t))
for t, n in zip(self._args, self._arg_names)),)
return "%s -> %r" % (args_repr, self._result)
class ArrayParams:
"""Represents parameters defining how to construct an array.
>>> ArrayParams()
ArrayParams(dtype=Unspec)
>>> ArrayParams(np.float32)
ArrayParams(dtype=float32)
>>> ArrayParams(np.float32, rank=4)
ArrayParams(dtype=float32, shape=(-1, -1, -1, -1))
>>> ArrayParams(np.float32, shape=(1, 2, 3))
ArrayParams(dtype=float32, shape=(1, 2, 3))
"""
__slots__ = ["dtype", "shape"]
def __init__(self, dtype=Unspec, shape=Unspec, rank=Unspec):
self.dtype = dtype
if shape is not Unspec:
self.shape = shape
elif rank is not Unspec:
self.shape = [-1 for _ in range(rank)]
else:
self.shape = Unspec
@property
def rank(self):
if self.shape is Unspec: return Unspec
return len(self.shape)
@classmethod
def from_constraints(cls, constraints):
"""Constructs params for a TypeConstraints list.
Unconstrained:
>>> ArrayParams.from_constraints(TypeConstraints())
ArrayParams(dtype=Unspec)
DType constrained:
>>> ArrayParams.from_constraints(TypeConstraints(DType(np.float32)))
ArrayParams(dtype=float32)
Rank constrained:
>>> ArrayParams.from_constraints(TypeConstraints(Rank(2)))
ArrayParams(dtype=Unspec, shape=(-1, -1))
Shape constrained:
>>> ArrayParams.from_constraints(TypeConstraints(Shape(1, 2, 3)))
ArrayParams(dtype=Unspec, shape=(1, 2, 3))
>>> ArrayParams.from_constraints(TypeConstraints(
... Rank(3), Shape(1, 2, 3)))
ArrayParams(dtype=Unspec, shape=(1, 2, 3))
Shape constrained with dynamic dim constraint:
>>> ArrayParams.from_constraints(TypeConstraints(
... Shape(1, 2, 3), DynamicDim(1)))
ArrayParams(dtype=Unspec, shape=(1, -1, 3))
>>> ArrayParams.from_constraints(TypeConstraints(
... Shape(1, 2, 3), DynamicDim((0, 2))))
ArrayParams(dtype=Unspec, shape=(-1, 2, -1))
Errors:
>>> ArrayParams.from_constraints(TypeConstraints(
... Rank(4), Shape(1, 2, 3)))
Traceback (most recent call last):
...
ValueError: Conflicting shape and rank: Rank(4) vs Shape(1, 2, 3)
>>> ArrayParams.from_constraints(TypeConstraints(
... Shape(1, 2, 3), DynamicDim((0, 5))))
Traceback (most recent call last):
...
ValueError: Out of range DimFlag(Dynamic, (0, 5)) for shape [-1, 2, 3]
"""
# TODO: Should have a 'canonicalize' method on TypeConstraints which
# reduces and verifies.
dtype_c = constraints.one_of(DType)
shape_c = constraints.one_of(Shape)
rank_c = constraints.one_of(Rank)
dim_flags = constraints.all_of(DimFlag)
dtype = dtype_c.dtype if dtype_c else Unspec
shape = Unspec
# Compute shape
if shape_c:
# TODO: Should be in canonicalizer
if rank_c and rank_c.rank != len(shape_c.dims):
raise ValueError("Conflicting shape and rank: %r vs %r" % (
rank_c, shape_c))
shape = list(shape_c.dims)
elif rank_c:
shape = [-1 for _ in range(rank_c.rank)]
# Apply dim flags
if shape is not Unspec and dim_flags:
for df in dim_flags:
flag, for_dims = df.dim_flag
for d in for_dims:
if d < 0 or d >= len(shape):
raise ValueError("Out of range %r for shape %r" % (
df, shape))
if flag == DimFlagEnum.Dynamic:
shape[d] = -1
return cls(dtype=dtype, shape=shape)
def __repr__(self):
try:
s = "ArrayParams(dtype=%s" % (
self.dtype.__name__ if isinstance(self.dtype, type) else self.dtype,)
if self.shape is not Unspec:
s += ", shape=%r" % (tuple(self.shape),)
s += ")"
return s
except:
return "ArrayParams(ERROR)"
@property
def is_concrete(self):
"""Returns true if the parameters are sufficient to construct an ndarray.
>>> ArrayParams().is_concrete
False
>>> ArrayParams(dtype=np.float32).is_concrete
False
>>> ArrayParams(dtype=np.float32, rank=1).is_concrete
False
>>> ArrayParams(dtype=np.float32, shape=(1, 2)).is_concrete
True
"""
if self.dtype is Unspec:
return False
if self.shape is Unspec:
return False
if any(d < 0 for d in self.shape):
return False
return True
@property
def mlir_tensor_type_asm(self):
"""Get a corresponding MLIR tensor type.
Fully Unspecified:
>>> ArrayParams().mlir_tensor_type_asm
'tensor<*x!numpy.any_dtype>'
Unranked:
>>> ArrayParams(dtype=np.float32).mlir_tensor_type_asm
'tensor<*xf32>'
Ranked:
>>> ArrayParams(dtype=np.float32, rank=3).mlir_tensor_type_asm
'tensor<?x?x?xf32>'
>>> ArrayParams(dtype=np.float32, shape=(-1, -1)).mlir_tensor_type_asm
'tensor<?x?xf32>'
Scalar:
>>> ArrayParams(dtype=np.float32, rank=0).mlir_tensor_type_asm
'tensor<f32>'
>>> ArrayParams(dtype=np.float32, shape=()).mlir_tensor_type_asm
'tensor<f32>'
Shaped:
>>> ArrayParams(dtype=np.float32, shape=(2, 3)).mlir_tensor_type_asm
'tensor<2x3xf32>'
>>> ArrayParams(dtype=np.float32, shape=(-1, 3)).mlir_tensor_type_asm
'tensor<?x3xf32>'
"""
if self.dtype is Unspec:
dtype_asm = "!numpy.any_dtype"
else:
dtype_asm = _dtype_to_mlir_asm(self.dtype)
if not dtype_asm:
raise ValueError(
"Unsupported MLIR tensor element type %r" % (self.dtype,))
if self.shape is Unspec:
shape_asm = "*"
else:
shape_asm = "x".join((str(d) if d >= 0 else "?") for d in self.shape)
if shape_asm: shape_asm += "x"
return "tensor<%s%s>" % (shape_asm, dtype_asm)
def new_ndarray(self):
"""Creates a new ndarray from these params.
>>> ArrayParams().new_ndarray()
Traceback (most recent call last):
...
ValueError: ArrayParams(dtype=Unspec) is not concrete
>>> ArrayParams(np.float32, (1, 2)).new_ndarray() * 0.0
array([[0., 0.]], dtype=float32)
"""
if not self.is_concrete:
raise ValueError("%r is not concrete" % (self,))
return np.ndarray(dtype=self.dtype, shape=self.shape)
class TypeConstraint:
"""Base class for type constraints."""
pass
class TypeConstraints(list):
"""Collection of type constraints.
>>> TypeConstraints([DynamicDim()])
TypeConstraints(DimFlag(Dynamic, Unspec))
>>> TypeConstraints([DynamicDim(), Rank(4)])
TypeConstraints(DimFlag(Dynamic, Unspec), Rank(4))
>>> TypeConstraints(DynamicDim(), Rank(4))
TypeConstraints(DimFlag(Dynamic, Unspec), Rank(4))
>>> TypeConstraints(Rank(4))
TypeConstraints(Rank(4))
>>> TypeConstraints("foobar")
Traceback (most recent call last):
...
AssertionError
"""
def __init__(self, *constraints):
if len(constraints) == 1 and not isinstance(
constraints[0], ArrayConstraint):
constraints = constraints[0]
super().__init__(constraints)
assert(all(isinstance(c, ArrayConstraint) for c in self))
def __repr__(self):
return "TypeConstraints(%s)" % (
", ".join([repr(c) for c in self]))
def all_of(self, clazz):
"""Finds all of the given class."""
return [c for c in self if isinstance(c, clazz)]
def one_of(self, clazz):
"""Finds at most one constraint of the given class."""
found = [c for c in self if isinstance(c, clazz)]
if not found: return None
if len(found) > 1:
raise ValueError("Conflicting constraints. Expected one of %r. Got %r" % (
clazz, found))
return found[0]
class ArrayConstraint(TypeConstraint):
"""Base class for a constraint on an array's characteristics."""
def implies_dtype(self):
return False
@property
def dtype(self):
raise NotImplementedError()
def implies_rank(self):
return False
@property
def rank(self):
raise NotImplementedError()
def implies_dims(self):
return False
@property
def dims(self):
raise NotImplementedError()
def implies_dim_flag(self):
return False
@property
def dim_flag(self):
raise NotImplementedError()
class DType(ArrayConstraint):
"""A constraint on a dtype.
DType constraints are exclusive with only one permitted in a set.
>>> DType(np.float32)
DType(float32)
>>> DType("foobar")
Traceback (most recent call last):
...
AssertionError
"""
__slots__ = ["_dtype"]
def __init__(self, dtype):
super().__init__()
assert isinstance(dtype, type)
self._dtype = dtype
@property
def dtype(self):
return self._dtype
def implies_dtype(self):
return True
def __repr__(self):
return "DType(%s)" % (self._dtype.__name__,)
class Rank(ArrayConstraint):
"""Establishes a fixed rank for the array.
>>> Rank(1)
Rank(1)
>>> Rank(0)
Rank(0)
>>> Rank(-1)
Traceback (most recent call last):
...
AssertionError
>>> Rank("foobar")
Traceback (most recent call last):
...
AssertionError
"""
__slots__ = ["_rank"]
def __init__(self, rank):
super().__init__()
assert(isinstance(rank, int) and rank >= 0)
self._rank = rank
@property
def rank(self):
return self._rank
def implies_rank(self):
return True
def __repr__(self):
return "Rank(%d)" % (self._rank)
class Shape(ArrayConstraint):
"""Establishes a static shape for an array.
All dimensions must be a non-negative integer or Unspec.
>>> Shape(1, 2, 3)
Shape(1, 2, 3)
>>> Shape(Unspec, 1)
Shape(Unspec, 1)
>>> Shape()
Shape()
>>> Shape(-1, 1)
Traceback (most recent call last):
...
AssertionError
"""
__slots__ = ["_dims"]
def __init__(self, *dims):
super().__init__()
assert(all(d is Unspec or (isinstance(d, int) and d >= 0) for d in dims))
self._dims = tuple(dims)
@property
def dims(self):
return self._dims
def implies_dims(self):
return True
@property
def rank(self):
return len(self._dims)
def implies_rank(self):
return True
def __repr__(self):
return "Shape(%s)" % (", ".join(str(d) for d in self._dims))
class DimFlagEnum(_LiterateEnum):
"""Flag for the kind of DimFlag constraint."""
Dynamic = 1
class DimFlag(ArrayConstraint):
"""Generic flag applying to one or more dimensions.
If dims is Unspec, the flag applies to all dims.
>>> DimFlag("Dynamic")
DimFlag(Dynamic, Unspec)
>>> DimFlag("Dynamic", 1)
DimFlag(Dynamic, (1,))
>>> DimFlag("Dynamic", (0, 1))
DimFlag(Dynamic, (0, 1))
"""
__slots__ = ["_flag", "_dims"]
def __init__(self, flag, dims=Unspec):
super().__init__()
self._flag = DimFlagEnum.parse(flag)
if isinstance(dims, int):
assert(dims >= 0)
self._dims = (dims,)
elif dims is Unspec:
self._dims = Unspec
else:
self._dims = tuple(dims)
assert(all(isinstance(d, int) and d >= 0 for d in self._dims))
def implies_dim_flag(self):
return False
@property
def dim_flag(self):
return self._flag, self._dims
def __repr__(self):
return "DimFlag(%r, %r)" % (self._flag, self._dims)
def DynamicDim(dims=Unspec):
"""Dim flag that signals a dimension should be considered dynamic."""
return DimFlag(DimFlagEnum.Dynamic, dims)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,4 +0,0 @@
{
global: PyInit_native;
local: *;
};

View File

@ -1,48 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import contextlib
import io
import os
import subprocess
import sys
def run_under_filecheck(main_file, callback, disable_filecheck=False):
"""Runs a callback under a FileCheck sub-process.
This is typically called from a main context and will sys.exit on
completion.
Args:
main_file: The file to process filecheck directives on. Typically
__file__ from the caller's perspective.
callback: The no-argument callback to invoke.
disable_filecheck: Whether to disable filecheck.
"""
disable_var = "NPCOMP_DISABLE_FILECHECK"
filecheck_binary_var = "FILECHECK_BINARY"
if "NPCOMP_DISABLE_FILECHECK" in os.environ:
print("WARNING:FileCheck disabled due to", disable_var,
"in the environment", file=sys.stderr)
disable_filecheck = True
if disable_filecheck:
callback()
sys.exit(0)
# Redirect through FileCheck
filecheck_capture_io = io.StringIO()
with contextlib.redirect_stdout(filecheck_capture_io):
callback()
filecheck_capture_io.flush()
filecheck_input = filecheck_capture_io.getvalue()
filecheck_binary = "FileCheck"
if filecheck_binary_var in os.environ:
filecheck_binary = os.environ[filecheck_binary_var]
print("Using FileCheck binary", filecheck_binary,
"(customize by setting", filecheck_binary_var, ")", file=sys.stderr)
filecheck_args = [filecheck_binary, main_file, "--dump-input=fail"]
print("LAUNCHING FILECHECK:", filecheck_args, file=sys.stderr)
p = subprocess.Popen(filecheck_args, stdin=subprocess.PIPE)
p.communicate(filecheck_input.encode("UTF-8"))
sys.exit(p.returncode)

View File

@ -1,53 +0,0 @@
#!/usr/bin/env python3
import os
import subprocess
import sys
TEST_MODULES = (
"npcomp.edsc_test",
"npcomp.tracing.context",
"npcomp.tracing.mlir_trace",
"npcomp.types",
"npcomp.exporter",
"npcomp.exp.extractor",
)
# Compute PYTHONPATH for sub processes.
DIRSEP = ":" if os.path.pathsep == "/" else ";"
PYTHONPATH = os.path.dirname(__file__)
if "PYTHONPATH" in os.environ:
PYTHONPATH = PYTHONPATH + DIRSEP + os.environ["PYTHONPATH"]
CHILD_ENVIRON = dict(os.environ)
CHILD_ENVIRON["PYTHONPATH"] = PYTHONPATH
# Configure filecheck.
FILECHECK_BINARY = os.path.abspath(
os.path.join(
os.path.dirname(__file__),
"..", "..", "..", "bin", "FileCheck"))
if os.path.exists(FILECHECK_BINARY):
CHILD_ENVIRON["FILECHECK_BINARY"] = FILECHECK_BINARY
else:
print("WARNING! Built FileCheck not found. Leaving to path resolution")
passed = []
failed = []
for test_module in TEST_MODULES:
print("--------====== RUNNING %s ======--------" % test_module)
try:
subprocess.check_call([sys.executable, "-m", test_module],
env=CHILD_ENVIRON)
print("--------====== DONE %s ======--------\n" % test_module)
passed.append(test_module)
except subprocess.CalledProcessError:
print("!!!!!!!!====== ERROR %s ======!!!!!!!!\n" % test_module)
failed.append(test_module)
print("Done: %d passed, %d failed" % (len(passed), len(failed)))
if failed:
for test_module in failed:
print(" %s: FAILED" % test_module)
sys.exit(1)