mirror of https://github.com/llvm/torch-mlir
This reverts commit 97bec86a8b
.
pull/2461/head
parent
97bec86a8b
commit
106b58597a
|
@ -748,7 +748,6 @@ STABLEHLO_PASS_SET = {
|
|||
"NewEmptyModuleNonDefaultFloatDtype_basic",
|
||||
"NewEmptyModuleNonDefaultIntDtype_basic",
|
||||
"NewEmptyStridedModuleDefaultDtype_basic",
|
||||
"EmptyStridedModule_basic",
|
||||
"PermuteModule_basic",
|
||||
"PermuteNegativeIndexModule_basic",
|
||||
"ReduceSumDimIntListKeepDimNegativeDimStaticModule_basic",
|
||||
|
@ -1422,5 +1421,4 @@ LTC_XFAIL_SET = {
|
|||
"ScatterValueIntModule_basic",
|
||||
"UniformStaticShapeModule_basic",
|
||||
"AtenEmbeddingBagStaticModule_basic",
|
||||
"EmptyStridedModule_basic",
|
||||
}
|
||||
|
|
|
@ -8335,34 +8335,6 @@ def Torch_AtenEmptyMemoryFormatOp : Torch_Op<"aten.empty.memory_format", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenEmptyStridedOp : Torch_Op<"aten.empty_strided", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::empty_strided : (int[], int[], int?, int?, Device?, bool?) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchListOfTorchIntType:$size,
|
||||
AnyTorchListOfTorchIntType:$stride,
|
||||
AnyTorchOptionalIntType:$dtype,
|
||||
AnyTorchOptionalIntType:$layout,
|
||||
AnyTorchOptionalDeviceType:$device,
|
||||
AnyTorchOptionalBoolType:$pin_memory
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenEmptyStridedOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 6, 1);
|
||||
}
|
||||
void AtenEmptyStridedOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 6, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenExpandOp : Torch_Op<"aten.expand", [
|
||||
AllowsTypeRefinement,
|
||||
ReadOnly
|
||||
|
|
|
@ -7220,9 +7220,6 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" func.func @\"__torch_mlir_shape_fn.aten.empty.memory_format\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.empty_strided\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<Device>, %arg5: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.full\"(%arg0: !torch.list<int>, %arg1: !torch.float, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<Device>, %arg5: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
|
@ -10536,18 +10533,6 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %2 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.empty_strided\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<Device>, %arg5: !torch.optional<bool>) -> !torch.int {\n"
|
||||
" %int6 = torch.constant.int 6\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %0 = torch.aten.__is__ %arg2, %none : !torch.optional<int>, !torch.none -> !torch.bool\n"
|
||||
" %1 = torch.prim.If %0 -> (!torch.int) {\n"
|
||||
" torch.prim.If.yield %int6 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" %2 = torch.prim.unchecked_cast %arg2 : !torch.optional<int> -> !torch.int\n"
|
||||
" torch.prim.If.yield %2 : !torch.int\n"
|
||||
" }\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.full_like\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<Device>, %arg5: !torch.optional<bool>, %arg6: !torch.optional<int>) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
|
|
|
@ -4416,53 +4416,6 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenEmptyStridedOp
|
||||
: public OpRewritePattern<AtenEmptyStridedOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenEmptyStridedOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
SmallVector<int64_t> sizeListInts, strideListInts;
|
||||
if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(sizeListInts)))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "all size list elements must be constant ints");
|
||||
if (!matchPattern(op.getStride(),
|
||||
m_TorchListOfConstantInts(strideListInts)))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "all stride list elements must be constant ints");
|
||||
|
||||
// We only support the cases with default stride values.
|
||||
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
|
||||
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
|
||||
// stride[2] == 1.
|
||||
bool isDefaultStride = true;
|
||||
for (unsigned i = 0; i < strideListInts.size(); i++) {
|
||||
int64_t defaultStride = 1;
|
||||
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
|
||||
defaultStride *= sizeListInts[j];
|
||||
if (defaultStride != strideListInts[i]) {
|
||||
isDefaultStride = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!isDefaultStride)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "only default strides supported for new_empty_strided op");
|
||||
|
||||
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
|
||||
|
||||
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
|
||||
op, op.getType(), op.getSize(), op.getDtype(), op.getLayout(), op.getDevice(),
|
||||
op.getPinMemory(), /*memoryFormat=*/noneVal);
|
||||
|
||||
return success();
|
||||
|
||||
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposePrimsSqueezeOp : public OpRewritePattern<PrimsSqueezeOp> {
|
||||
public:
|
||||
|
@ -5298,7 +5251,6 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNewEmptyStridedOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyStridedOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenBucketizeTensorOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposePrimsSqueezeOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenMovedimIntOp>(patterns);
|
||||
|
|
|
@ -480,7 +480,6 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenRandnLikeOp>();
|
||||
target.addIllegalOp<AtenVarMeanOp>();
|
||||
target.addIllegalOp<AtenNewEmptyStridedOp>();
|
||||
target.addIllegalOp<AtenEmptyStridedOp>();
|
||||
target.addIllegalOp<AtenBucketizeTensorOp>();
|
||||
target.addIllegalOp<PrimsSqueezeOp>();
|
||||
target.addIllegalOp<AtenMovedimIntOp>();
|
||||
|
|
|
@ -643,8 +643,7 @@ def aten〇ones〡shape(size: List[int], dtype: Optional[int] = None, layout: Op
|
|||
|
||||
def aten〇empty〇memory_format〡shape(size: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, memory_format: Optional[int] = None) -> List[int]:
|
||||
return size
|
||||
def aten〇empty_strided〡shape(size: List[int], stride: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
def aten〇full〡shape(size: List[int], fill_value: float, dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
|
@ -3238,13 +3237,6 @@ def aten〇empty_like〡dtype(self_rank_dtype: Tuple[int, int], dtype: Optional[
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype if dtype is None else dtype
|
||||
|
||||
@check_dtype_function(
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=0, size=[1], stride=[1]) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=0, size=[1], stride=[1], dtype=torch.float16) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=0, size=[1], stride=[1], dtype=torch.int32) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=0, size=[1], stride=[1], dtype=torch.complex64))
|
||||
def aten〇empty_strided〡dtype(size: List[int], stride: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> int:
|
||||
return torch.float32 if dtype is None else dtype
|
||||
@check_dtype_function(
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=1, fill_value=0.0) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=1, fill_value=0) +
|
||||
|
@ -3432,7 +3424,7 @@ def aten〇atan〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
|||
return torch.float32
|
||||
return self_dtype
|
||||
|
||||
# @check_dtype_function(_check_two_tensor_op())
|
||||
@check_dtype_function(_check_two_tensor_op())
|
||||
def aten〇linear〡dtype(input_rank_dtype: Tuple[int, int], weight_rank_dtype: Tuple[int, int], bias_rank_dtype: Optional[Tuple[int, int]] = None) -> int:
|
||||
input_rank, input_dtype = input_rank_dtype
|
||||
weight_rank, weight_dtype = weight_rank_dtype
|
||||
|
|
|
@ -542,7 +542,6 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::zeros_like : (Tensor, int?, int?, Device?, bool?, int?) -> (Tensor)")
|
||||
emit("aten::ones_like : (Tensor, int?, int?, Device?, bool?, int?) -> (Tensor)")
|
||||
emit("aten::empty.memory_format : (int[], int?, int?, Device?, bool?, int?) -> (Tensor)")
|
||||
emit("aten::empty_strided : (int[], int[], int?, int?, Device?, bool?) -> (Tensor)")
|
||||
emit("aten::expand : (Tensor, int[], bool) -> (Tensor)")
|
||||
emit("aten::expand_as : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::broadcast_to : (Tensor, int[]) -> (Tensor)", has_folder=True)
|
||||
|
|
|
@ -1628,27 +1628,3 @@ class NewEmptyStridedModuleDefaultDtype(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: NewEmptyStridedModuleDefaultDtype())
|
||||
def NewEmptyStridedModuleDefaultDtype_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class EmptyStridedModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([2, 3, 4], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
x = torch.ops.aten.empty_strided(a.size(), stride=[12, 4, 1])
|
||||
y = x.copy_(a)
|
||||
return y
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: EmptyStridedModule())
|
||||
def EmptyStridedModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
|
Loading…
Reference in New Issue