Add lowering of `torch.log` op

The lowering of `torch.log` op has been added.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
pull/395/head snapshot-20211102.60
Prashant Kumar 2021-11-02 15:38:13 +00:00
parent 6dde5b347e
commit 127c7d8e27
5 changed files with 51 additions and 3 deletions

View File

@ -343,3 +343,20 @@ class RsubModule_noalpha(torch.nn.Module):
@register_test_case(module_factory=lambda: RsubModule_noalpha())
def RsubModule_noalpha_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class ElementwiseLogModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.log(a)
@register_test_case(module_factory=lambda: ElementwiseLogModule())
def ElementwiseLogModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))

View File

@ -72,6 +72,34 @@ def Torch_AtenRelu_Op : Torch_Op<"aten.relu_", [
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenLogOp : Torch_Op<"aten.log", [
AllowsTypeRefinement,
HasValueSemantics
]> {
let summary = "Generated op for `aten::log : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenLog_Op : Torch_Op<"aten.log_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::log_ : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenSigmoidOp : Torch_Op<"aten.sigmoid", [
AllowsTypeRefinement,
HasValueSemantics

View File

@ -1278,6 +1278,8 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
return b.create<math::TanhOp>(loc, payloadArgs[0]);
if (isa<AtenExpOp>(op))
return b.create<math::ExpOp>(loc, payloadArgs[0]);
if (isa<AtenLogOp>(op))
return b.create<math::LogOp>(loc, payloadArgs[0]);
if (isa<AtenSigmoidOp>(op)) {
Type elementType = payloadArgs[0].getType();
auto one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
@ -1661,7 +1663,7 @@ struct ConvertElementwiseOp : ConversionPattern {
if (!isa<AtenTanhOp, AtenReluOp, AtenGeluOp, AtenAddTensorOp,
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp>(op))
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
@ -2797,7 +2799,7 @@ public:
target.addIllegalOp<AtenTanhOp, AtenReluOp, AtenGeluOp, AtenAddTensorOp,
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp>();
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenUnsqueezeOp>();
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);

View File

@ -230,7 +230,7 @@ public:
DerefineOp, AtenToPrimDeviceOp, AtenCpuOp, AtenContiguousOp,
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp,
AtenCopy_Op, AtenIndexPut_Op, AtenCopy_Op, AtenCumsumOp,
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp>(op)) {
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>(op)) {
return getLatticeElement(op->getResult(0)).join(*operands[0]);
}

View File

@ -439,6 +439,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
for key in [
"aten::tanh : (Tensor) -> (Tensor)",
"aten::relu : (Tensor) -> (Tensor)",
"aten::log : (Tensor) -> (Tensor)",
"aten::sigmoid : (Tensor) -> (Tensor)",
"aten::sin : (Tensor) -> (Tensor)",
"aten::exp : (Tensor) -> (Tensor)",