mirror of https://github.com/llvm/torch-mlir
[fx] Accept `func_visibility=` and return created func op. (#3054)
This is a partial landing of #3046 while waiting for an upstream change for the rest of it.pull/3061/head
parent
9ae33e482e
commit
17eeac880a
|
@ -302,7 +302,9 @@ def sparsity_encoding(shape: torch.Size, sparsity: SparsityMeta) -> str:
|
|||
if sparsity.layout is torch.sparse_coo:
|
||||
assert sparse_dim >= 2 and blocksize is None
|
||||
trail_dim = batch_dim + sparse_dim - 1
|
||||
coords = ",".join(f"d{d}:singleton(nonunique,soa)" for d in range(batch_dim+1, trail_dim))
|
||||
coords = ",".join(
|
||||
f"d{d}:singleton(nonunique,soa)" for d in range(batch_dim + 1, trail_dim)
|
||||
)
|
||||
sep = "," if sparse_dim > 2 else ""
|
||||
lvls = f"d{batch_dim}:compressed(nonunique),{coords}{sep}d{trail_dim}:singleton(soa)"
|
||||
elif sparsity.layout is torch.sparse_csr:
|
||||
|
@ -467,8 +469,12 @@ class FxImporter:
|
|||
return self._m.operation
|
||||
|
||||
def import_program(
|
||||
self, prog: torch.export.ExportedProgram, *, func_name: str = "main"
|
||||
):
|
||||
self,
|
||||
prog: torch.export.ExportedProgram,
|
||||
*,
|
||||
func_name: str = "main",
|
||||
func_visibility: Optional[str] = None,
|
||||
) -> Operation:
|
||||
"""Imports an ExportedProgram according to our chosen canonical representation.
|
||||
|
||||
This mechanism is the fully general solution for handling an ExportedProgram
|
||||
|
@ -628,7 +634,9 @@ class FxImporter:
|
|||
|
||||
# Create the function.
|
||||
with loc:
|
||||
func_op = func_dialect.FuncOp(func_name, ftype, ip=self._m_ip)
|
||||
func_op = func_dialect.FuncOp(
|
||||
func_name, ftype, ip=self._m_ip, visibility=func_visibility
|
||||
)
|
||||
entry_block = Block.create_at_start(func_op.body, ftype.inputs)
|
||||
|
||||
node_importer = GraphNodeImporter(
|
||||
|
@ -668,10 +676,15 @@ class FxImporter:
|
|||
)
|
||||
node_importer.return_node_values(loc, user_outputs)
|
||||
self.symbol_table.insert(func_op)
|
||||
return func_op
|
||||
|
||||
def import_frozen_program(
|
||||
self, prog: torch.export.ExportedProgram, func_name: str = "main"
|
||||
):
|
||||
self,
|
||||
prog: torch.export.ExportedProgram,
|
||||
*,
|
||||
func_name: str = "main",
|
||||
func_visibility: Optional[str] = None,
|
||||
) -> Operation:
|
||||
"""Imports a consolidated torch.export.ExportedProgram instance.
|
||||
|
||||
If using the new torch.export path (vs a lower level precursor), then this is
|
||||
|
@ -750,17 +763,25 @@ class FxImporter:
|
|||
node.replace_all_uses_with(replacement)
|
||||
g.erase_node(node)
|
||||
|
||||
self.import_stateless_graph(g, func_name)
|
||||
return self.import_stateless_graph(
|
||||
g, func_name=func_name, func_visibility=func_visibility
|
||||
)
|
||||
|
||||
def import_graph_module(self, gm: GraphModule):
|
||||
def import_graph_module(self, gm: GraphModule) -> Operation:
|
||||
"""Low-level import of a GraphModule assuming that it has been functionalized.
|
||||
|
||||
TODO: This mechanism is deprecated by the `import_program` entry-point and
|
||||
it should be removed when no longer required for backwards compatibility.
|
||||
"""
|
||||
self.import_stateless_graph(gm.graph)
|
||||
return self.import_stateless_graph(gm.graph)
|
||||
|
||||
def import_stateless_graph(self, g: Graph, func_name: str = "main"):
|
||||
def import_stateless_graph(
|
||||
self,
|
||||
g: Graph,
|
||||
*,
|
||||
func_name: str = "main",
|
||||
func_visibility: Optional[str] = None,
|
||||
) -> Operation:
|
||||
"""Low-level import of a functionalized, assumed stateless Graph as a func.
|
||||
|
||||
TODO: This mechanism is deprecated by the `import_program` entry-point and
|
||||
|
@ -775,6 +796,7 @@ class FxImporter:
|
|||
func_name,
|
||||
ftype,
|
||||
ip=self._m_ip,
|
||||
visibility=func_visibility,
|
||||
)
|
||||
entry_block = Block.create_at_start(func.body, ftype.inputs)
|
||||
node_importer = GraphNodeImporter(
|
||||
|
@ -785,6 +807,7 @@ class FxImporter:
|
|||
)
|
||||
node_importer.import_nodes(g.nodes)
|
||||
self.symbol_table.insert(func)
|
||||
return func
|
||||
|
||||
def _graph_to_function_meta(self, g: Graph) -> Tuple[FunctionType, Location]:
|
||||
"""Extracts function metadata from the Graph.
|
||||
|
|
Loading…
Reference in New Issue