mirror of https://github.com/llvm/torch-mlir
Implement linalg lowering of diag_embed torch op (#2885)
This PR adds lowering of diag_embed to linalg dilect. Tracked in https://github.com/nod-ai/SHARK-Turbine/issues/288 --------- Co-authored-by: sachink <sachink@xilinx.com>pull/3049/head
parent
99b3a5f117
commit
1fcbfa87ec
|
@ -8429,6 +8429,32 @@ def Torch_AtenCosineEmbeddingLossOp : Torch_Op<"aten.cosine_embedding_loss", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenDiagEmbedOp : Torch_Op<"aten.diag_embed", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::diag_embed : (Tensor, int, int, int) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
Torch_IntType:$offset,
|
||||
Torch_IntType:$dim1,
|
||||
Torch_IntType:$dim2
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenDiagEmbedOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 4, 1);
|
||||
}
|
||||
void AtenDiagEmbedOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 4, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenConstantPadNdOp : Torch_Op<"aten.constant_pad_nd", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include "mlir/Dialect/Complex/IR/Complex.h"
|
||||
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
||||
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
||||
#include "mlir/Dialect/Math/IR/Math.h"
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/IR/Matchers.h"
|
||||
#include "torch-mlir/Conversion/TorchToLinalg/Utils.h"
|
||||
|
@ -2094,6 +2095,159 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class ConvertAtenDiagEmbedOp : public OpConversionPattern<AtenDiagEmbedOp> {
|
||||
|
||||
static SmallVector<Value>
|
||||
getDiagEmbedResultShape(OpBuilder &b, Location loc, Value tensor,
|
||||
int64_t offset, int64_t dim1, int64_t dim2) {
|
||||
auto inputType = tensor.getType().cast<RankedTensorType>();
|
||||
auto inputRank = inputType.getRank();
|
||||
|
||||
// output tensor always has 1 extra dimension
|
||||
auto resultRank = inputRank + 1;
|
||||
|
||||
// regardless of offset sign, output tensor is same
|
||||
Value constOffset = b.create<arith::ConstantIndexOp>(loc, offset);
|
||||
Value absOffset = b.create<math::AbsIOp>(loc, constOffset);
|
||||
|
||||
// diagonal size is determined by last input dimension
|
||||
auto lastInputDim = getDimOp(b, loc, tensor, inputRank - 1);
|
||||
Value diagDim = b.create<arith::AddIOp>(loc, lastInputDim, absOffset);
|
||||
|
||||
// output shape has same dimensions as input
|
||||
// except for the diagonal dimensions
|
||||
int input_dim_idx = 0;
|
||||
SmallVector<Value> resultShape;
|
||||
for (unsigned int i = 0; i < resultRank; i++) {
|
||||
if (i == dim1 || i == dim2)
|
||||
resultShape.push_back(diagDim);
|
||||
else
|
||||
resultShape.push_back(getDimOp(b, loc, tensor, input_dim_idx++));
|
||||
}
|
||||
|
||||
return resultShape;
|
||||
}
|
||||
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(AtenDiagEmbedOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
|
||||
Location loc = op->getLoc();
|
||||
|
||||
Value input = adaptor.getSelf();
|
||||
auto inputType = input.getType().cast<RankedTensorType>();
|
||||
auto inputRank = inputType.getRank();
|
||||
auto resultRank = inputRank + 1;
|
||||
|
||||
int64_t offset;
|
||||
if (!matchPattern(op.getOffset(), m_TorchConstantInt(&offset)))
|
||||
return rewriter.notifyMatchFailure(op, "offset is not constant");
|
||||
|
||||
int64_t dim1;
|
||||
if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1)))
|
||||
return rewriter.notifyMatchFailure(op, "dim1 is not constant");
|
||||
dim1 = toPositiveDim(dim1, resultRank);
|
||||
if (!isValidDim(dim1, resultRank))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "dim1 can only be in closed range [" +
|
||||
std::to_string(-resultRank) + "," +
|
||||
std::to_string(resultRank - 1) + "]");
|
||||
|
||||
int64_t dim2;
|
||||
if (!matchPattern(op.getDim2(), m_TorchConstantInt(&dim2)))
|
||||
return rewriter.notifyMatchFailure(op, "dim2 is not constant");
|
||||
dim2 = toPositiveDim(dim2, resultRank);
|
||||
if (!isValidDim(dim2, resultRank))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "dim2 can only be in closed range [" +
|
||||
std::to_string(-resultRank) + "," +
|
||||
std::to_string(resultRank - 1) + "]");
|
||||
|
||||
if (dim1 == dim2)
|
||||
return rewriter.notifyMatchFailure(op, "dim1 and dim2 can not be equal");
|
||||
|
||||
// add linalg.fill
|
||||
Type resultElemType = inputType.getElementType();
|
||||
auto resultShape =
|
||||
getDiagEmbedResultShape(rewriter, loc, input, offset, dim1, dim2);
|
||||
Value zeroTensor =
|
||||
createZeroInitTensor(rewriter, loc, resultShape, resultElemType);
|
||||
|
||||
// add linalg.generic with diagonal access pattern affine indexing maps
|
||||
SmallVector<AffineMap> indexingMaps = {
|
||||
rewriter.getMultiDimIdentityMap(resultRank),
|
||||
};
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
resultRank, utils::IteratorType::parallel);
|
||||
Value resultTensor =
|
||||
rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, zeroTensor.getType(), ValueRange{}, zeroTensor,
|
||||
/*indexingMaps=*/indexingMaps,
|
||||
/*iteratorTypes=*/iteratorTypes,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
Value dim1Index = b.create<linalg::IndexOp>(loc, dim1);
|
||||
Value dim2Index = b.create<linalg::IndexOp>(loc, dim2);
|
||||
|
||||
// to pick right element from input, first add all dimensions
|
||||
// except last one, then last will be either dim1 or dim2
|
||||
// depending upon lower or upper diagonal defined by offset
|
||||
// sign
|
||||
SmallVector<Value> inputIndices;
|
||||
for (unsigned int i = 0; i < resultRank; i++) {
|
||||
if (i != dim1 && i != dim2) {
|
||||
inputIndices.push_back(b.create<linalg::IndexOp>(loc, i));
|
||||
}
|
||||
}
|
||||
|
||||
// adjust output diagonal indices and last input Index based
|
||||
// on offset
|
||||
Value dim1IdxAdjusted;
|
||||
Value dim2IdxAdjusted;
|
||||
if (offset < 0) {
|
||||
Value absOffset =
|
||||
b.create<arith::ConstantIndexOp>(loc, -offset);
|
||||
dim1IdxAdjusted = dim1Index;
|
||||
dim2IdxAdjusted =
|
||||
b.create<arith::AddIOp>(loc, dim2Index, absOffset);
|
||||
inputIndices.push_back(
|
||||
b.create<linalg::IndexOp>(loc, dim2));
|
||||
} else {
|
||||
Value constOffset =
|
||||
b.create<arith::ConstantIndexOp>(loc, offset);
|
||||
dim1IdxAdjusted =
|
||||
b.create<arith::AddIOp>(loc, dim1Index, constOffset);
|
||||
dim2IdxAdjusted = dim2Index;
|
||||
inputIndices.push_back(
|
||||
b.create<linalg::IndexOp>(loc, dim1));
|
||||
}
|
||||
|
||||
Value isDiagonal =
|
||||
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
||||
dim1IdxAdjusted, dim2IdxAdjusted);
|
||||
|
||||
Value inputElem = b.create<tensor::ExtractOp>(
|
||||
loc, resultElemType, input, inputIndices);
|
||||
|
||||
Value result = rewriter.create<arith::SelectOp>(
|
||||
loc, isDiagonal, inputElem, args[0]);
|
||||
b.create<linalg::YieldOp>(loc, result);
|
||||
})
|
||||
.getResult(0);
|
||||
|
||||
RankedTensorType resultType = getTypeConverter()
|
||||
->convertType(op->getResult(0).getType())
|
||||
.cast<RankedTensorType>();
|
||||
|
||||
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, resultTensor);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
|
||||
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
||||
ConversionTarget &target) {
|
||||
|
@ -2136,4 +2290,6 @@ void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
|
|||
patterns.add<ConvertAtenViewAsRealOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenDiagonalOp>();
|
||||
patterns.add<ConvertAtenDiagonalOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenDiagEmbedOp>();
|
||||
patterns.add<ConvertAtenDiagEmbedOp>(typeConverter, context);
|
||||
}
|
||||
|
|
|
@ -8253,6 +8253,91 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" func.func @\"__torch_mlir_shape_fn.aten.new_empty_strided\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<int>, %arg5: !torch.optional<Device>, %arg6: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg1 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.diag_embed\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__._diag_embed_shape_helper(%arg0, %arg1, %arg2, %arg3) : (!torch.list<int>, !torch.int, !torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @__torch__._diag_embed_shape_helper(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int) -> !torch.list<int> {\n"
|
||||
" %int-1 = torch.constant.int -1\n"
|
||||
" %true = torch.constant.bool true\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||
" %int1 = torch.constant.int 1\n"
|
||||
" %int0 = torch.constant.int 0\n"
|
||||
" %0 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
|
||||
" %1 = torch.aten.add.int %0, %int1 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" %2 = torch.aten.ne.int %arg2, %arg3 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %2 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %3 = torch.aten.lt.int %arg2, %1 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %3 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %4 = torch.aten.neg.int %1 : !torch.int -> !torch.int\n"
|
||||
" %5 = torch.aten.ge.int %arg2, %4 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %5 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %6 = torch.aten.lt.int %arg3, %1 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %6 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %7 = torch.aten.neg.int %1 : !torch.int -> !torch.int\n"
|
||||
" %8 = torch.aten.ge.int %arg3, %7 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %8 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %9 = torch.aten.lt.int %arg2, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %10 = torch.prim.If %9 -> (!torch.int) {\n"
|
||||
" %15 = torch.aten.add.int %1, %arg2 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" torch.prim.If.yield %15 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %arg2 : !torch.int\n"
|
||||
" }\n"
|
||||
" %11 = torch.aten.lt.int %arg3, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %12 = torch.prim.If %11 -> (!torch.int) {\n"
|
||||
" %15 = torch.aten.add.int %1, %arg3 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" torch.prim.If.yield %15 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %arg3 : !torch.int\n"
|
||||
" }\n"
|
||||
" %13 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
||||
" %14 = torch.prim.Loop %1, %true, init(%int0) {\n"
|
||||
" ^bb0(%arg4: !torch.int, %arg5: !torch.int):\n"
|
||||
" %15 = torch.prim.ListConstruct %10, %12 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" %16 = torch.aten.__contains__.int_list %15, %arg4 : !torch.list<int>, !torch.int -> !torch.bool\n"
|
||||
" %17 = torch.prim.If %16 -> (!torch.int) {\n"
|
||||
" %18 = torch.aten.__getitem__.t %arg0, %int-1 : !torch.list<int>, !torch.int -> !torch.int\n"
|
||||
" %19 = torch.operator \"prim.abs.int\"(%arg1) : (!torch.int) -> !torch.int \n"
|
||||
" %20 = torch.aten.add.int %18, %19 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" %21 = torch.aten.append.t %13, %20 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
|
||||
" torch.prim.If.yield %arg5 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" %18 = torch.aten.__getitem__.t %arg0, %arg5 : !torch.list<int>, !torch.int -> !torch.int\n"
|
||||
" %19 = torch.aten.append.t %13, %18 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
|
||||
" %20 = torch.aten.add.int %arg5, %int1 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" torch.prim.If.yield %20 : !torch.int\n"
|
||||
" }\n"
|
||||
" torch.prim.Loop.condition %true, iter(%17 : !torch.int)\n"
|
||||
" } : (!torch.int, !torch.bool, !torch.int) -> !torch.int\n"
|
||||
" return %13 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten._to_copy\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.bool, %arg6: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -12516,6 +12601,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %2 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.diag_embed\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int, %arg2: !torch.int, %arg3: !torch.int) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" return %0#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.rand_like\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.optional<int>) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
|
|
|
@ -1878,6 +1878,12 @@ ONNX_XFAIL_SET = {
|
|||
"DiagonalModule_with_dims_and_offset",
|
||||
"DiagonalModule_with_negative_dims",
|
||||
"DiagonalModule_with_offset",
|
||||
"AtenDiagEmbedDefaultDiag_basic",
|
||||
"AtenDiagEmbedDimDiag_basic",
|
||||
"AtenDiagEmbedOffsetDiag_basic",
|
||||
"AtenDiagEmbedRevDimDiag_basic",
|
||||
"AtenDiagEmbedNegOffsetDiag_basic",
|
||||
"AtenDiagEmbedNonDefault4DDiag_basic",
|
||||
"ScatterReduceFloatMaxModuleIncludeSelf",
|
||||
"ScatterReduceFloatMinModuleIncludeSelf",
|
||||
"ScatterReduceFloatProdModuleIncludeSelf",
|
||||
|
|
|
@ -53,6 +53,32 @@ def _embedding_bag_helper(weight: List[int], indices: List[int],
|
|||
|
||||
return output_bag_shape, offset2bag_shape, bag_size_shape, max_indices_shape
|
||||
|
||||
def _diag_embed_shape_helper(self: List[int], offset: int, dim1: int, dim2: int):
|
||||
self_rank = len(self)
|
||||
result_rank = self_rank + 1
|
||||
|
||||
assert dim1 != dim2
|
||||
assert dim1 < result_rank
|
||||
assert dim1 >= -(result_rank)
|
||||
assert dim2 < result_rank
|
||||
assert dim2 >= -(result_rank)
|
||||
|
||||
if dim1 < 0:
|
||||
dim1 = result_rank + dim1
|
||||
if dim2 < 0:
|
||||
dim2 = result_rank + dim2
|
||||
|
||||
result_shape: List[int] = []
|
||||
input_dim_idx = 0
|
||||
for i in range(result_rank):
|
||||
if i in (dim1, dim2):
|
||||
result_shape.append(self[-1] + abs(offset))
|
||||
else:
|
||||
result_shape.append(self[input_dim_idx])
|
||||
input_dim_idx += 1
|
||||
|
||||
return result_shape
|
||||
|
||||
def aten〇triu〡shape(self: List[int], diagonal: int = 0) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -1057,6 +1083,20 @@ def aten〇new_empty〡shape(self: List[int], size: List[int], dtype: Optional[i
|
|||
def aten〇new_empty_strided〡shape(self: List[int], size: List[int], stride: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
@check_shape_function([
|
||||
Invocation(TensorOfShape(2, 3, 4)), # Basic case.
|
||||
Invocation(TensorOfShape(2, 3, 4), dim1=1, dim2=3), # Test explicit dim1 and dim2.
|
||||
Invocation(TensorOfShape(2, 3, 4), offset=1, dim1=1, dim2=3), # Positive offset.
|
||||
Invocation(TensorOfShape(2, 3, 4), offset=1, dim1=3, dim2=1), # Reverse dim1 and dim2
|
||||
Invocation(TensorOfShape(2, 3, 4), offset=-1, dim1=1, dim2=3), # Negative offset
|
||||
Invocation(TensorOfShape(2, 3, 4), offset=3), # large `offset`.
|
||||
Invocation(TensorOfShape(2)), # Input one-dimensional.
|
||||
ErrorInvocation(TensorOfShape(2, 3, 4), dim1=1, dim2=1), # `dim1` and `dim2` equal.
|
||||
ErrorInvocation(TensorOfShape(2, 3, 4), dim1=4, dim2=1), # `dim1` out of bounds.
|
||||
])
|
||||
def aten〇diag_embed〡shape(self: List[int], offset: int = 0, dim1: int = -2, dim2: int = -1) -> List[int]:
|
||||
return _diag_embed_shape_helper(self, offset, dim1, dim2)
|
||||
|
||||
def aten〇_to_copy〡shape(self: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, non_blocking: bool = False, memory_format: Optional[int] = None) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -4200,6 +4240,11 @@ def aten〇new_empty_strided〡dtype(self_rank_dtype: Tuple[int, int], size: Lis
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype if dtype is None else dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇diag_embed〡dtype(self_rank_dtype: Tuple[int, int], offset: int = 0, dim1: int = -2, dim2: int = -1) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=1, dtype=torch.float16) +
|
||||
_check_tensors_with_the_same_dtype(num_of_tensors=1, dtype=torch.int32) +
|
||||
|
|
|
@ -561,6 +561,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::log_sigmoid_backward : (Tensor, Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::sigmoid_backward : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::cosine_embedding_loss : (Tensor, Tensor, Tensor, float, int) -> (Tensor)")
|
||||
emit("aten::diag_embed : (Tensor, int, int, int) -> (Tensor)")
|
||||
|
||||
# Misc tensor ops.
|
||||
emit("aten::constant_pad_nd : (Tensor, int[], Scalar) -> (Tensor)")
|
||||
|
|
|
@ -1873,3 +1873,118 @@ class EmptyStridedSizeIntStrideModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: EmptyStridedSizeIntStrideModule())
|
||||
def EmptyStridedSizeIntStrideModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenDiagEmbedDefaultDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedDefaultDiag())
|
||||
def AtenDiagEmbedDefaultDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
|
||||
class AtenDiagEmbedDimDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a, offset=0, dim1=1, dim2=3)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedDimDiag())
|
||||
def AtenDiagEmbedDimDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
|
||||
class AtenDiagEmbedOffsetDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a, offset=1, dim1=1, dim2=3)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedOffsetDiag())
|
||||
def AtenDiagEmbedOffsetDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
|
||||
class AtenDiagEmbedRevDimDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a, offset=1, dim1=3, dim2=1)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedRevDimDiag())
|
||||
def AtenDiagEmbedRevDimDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
|
||||
class AtenDiagEmbedNegOffsetDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a, offset=-1, dim1=1, dim2=3)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedNegOffsetDiag())
|
||||
def AtenDiagEmbedNegOffsetDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4))
|
||||
|
||||
class AtenDiagEmbedNonDefault4DDiag(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.diag_embed(a, offset=-2, dim1=1, dim2=-3)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenDiagEmbedNonDefault4DDiag())
|
||||
def AtenDiagEmbedNonDefault4DDiag_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 3, 4, 5))
|
Loading…
Reference in New Issue