mirror of https://github.com/llvm/torch-mlir
parent
abfaf8c577
commit
22aeb967c5
|
@ -396,4 +396,34 @@ class BroadcastToModule(torch.nn.Module):
|
|||
|
||||
@register_test_case(module_factory=lambda: BroadcastToModule())
|
||||
def BroadcastToModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 1, 1))
|
||||
module.forward(tu.rand(3, 1, 1))
|
||||
|
||||
class OnesModuleInt(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
])
|
||||
def forward(self):
|
||||
return torch.ones(3, 4, dtype=torch.int64)
|
||||
|
||||
@register_test_case(module_factory=lambda: OnesModuleInt())
|
||||
def OnesModuleInt_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
||||
class OnesModuleFloat(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
])
|
||||
def forward(self):
|
||||
return torch.ones(3, 4, dtype=torch.float32)
|
||||
|
||||
@register_test_case(module_factory=lambda: OnesModuleFloat())
|
||||
def OnesModuleFloat_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
|
|
@ -2233,6 +2233,60 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class ConvertAtenOnesOp : public OpConversionPattern<AtenOnesOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(AtenOnesOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
return failure();
|
||||
AtenOnesOp::Adaptor adaptor(operands);
|
||||
Location loc = op.getLoc();
|
||||
|
||||
// We ignore device, but add simple asserts for unimplemented kwargs
|
||||
if (!adaptor.layout().getType().isa<Torch::NoneType>())
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"only default layout is supported");
|
||||
bool pinMemory;
|
||||
if (!adaptor.pin_memory().getType().isa<Torch::NoneType>() &&
|
||||
!matchPattern(adaptor.pin_memory(), m_TorchConstantBool(&pinMemory)))
|
||||
return rewriter.notifyMatchFailure(op, "memory pinning not supported");
|
||||
|
||||
SmallVector<Value> size, sizeIndex;
|
||||
if (!getListConstructElements(adaptor.size(), size)) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "size must be created by ListConstruct");
|
||||
}
|
||||
size = getTypeConvertedValues(rewriter, loc, getTypeConverter(), size);
|
||||
for (size_t i = 0; i < size.size(); i++)
|
||||
sizeIndex.push_back(castIntToIndex(rewriter, loc, size[i]));
|
||||
|
||||
RankedTensorType newResultType =
|
||||
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
||||
Type outElementType = newResultType.getElementType();
|
||||
|
||||
Value one = rewriter.create<arith::ConstantOp>(
|
||||
loc, outElementType,
|
||||
(outElementType.isa<mlir::FloatType>()
|
||||
? rewriter.getFloatAttr(outElementType, 1).cast<mlir::Attribute>()
|
||||
: rewriter.getIntegerAttr(outElementType, 1)
|
||||
.cast<mlir::Attribute>()));
|
||||
Value outTensor = rewriter
|
||||
.create<linalg::InitTensorOp>(
|
||||
loc, sizeIndex, newResultType.getElementType())
|
||||
.getResult();
|
||||
Value fillOp =
|
||||
rewriter.create<linalg::FillOp>(loc, one, outTensor).getResult(0);
|
||||
|
||||
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, fillOp);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// The pass
|
||||
// -----------------------------------------------------------------------------
|
||||
|
@ -2302,6 +2356,8 @@ public:
|
|||
patterns.add<ConvertAtenSizeIntOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenEmbeddingOp>();
|
||||
patterns.add<ConvertAtenEmbeddingOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenOnesOp>();
|
||||
patterns.add<ConvertAtenOnesOp>(typeConverter, context);
|
||||
|
||||
if (failed(applyPartialConversion(getOperation(), target,
|
||||
std::move(patterns))))
|
||||
|
|
Loading…
Reference in New Issue