mirror of https://github.com/llvm/torch-mlir
[onnx] Fix lowering `onnx.Shrink` to Torch (#3603)
This fixes the result type of the `torch.aten.lt.Scalar` and `torch.aten.ge.Scalar` ops created during the lowering of `onnx.Shrink` to Torch.pull/3607/head
parent
18139994e8
commit
341f415b1e
|
@ -3229,6 +3229,10 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
|
|||
return rewriter.notifyMatchFailure(
|
||||
binder.op, "unimplemented: non-floating point dtype");
|
||||
|
||||
Torch::ValueTensorType comparisonResultType =
|
||||
rewriter.getType<Torch::ValueTensorType>(
|
||||
ArrayRef<int64_t>(inputType.getSizes()), rewriter.getI1Type());
|
||||
|
||||
// The formula of this operator is: If x < -lambd, y = x + bias; If x >
|
||||
// lambd, y = x - bias; Otherwise, y = 0.
|
||||
// The implementation is based on the following algorithm:
|
||||
|
@ -3261,13 +3265,13 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
|
|||
loc, rewriter.getFloatAttr(rewriter.getF64Type(), -lambd));
|
||||
|
||||
Value inputLTNegLambd = rewriter.create<Torch::AtenLtScalarOp>(
|
||||
loc, inputType, input, constNegLambd);
|
||||
loc, comparisonResultType, input, constNegLambd);
|
||||
Value inputPlusBias = rewriter.create<Torch::AtenAddScalarOp>(
|
||||
loc, inputType, input, constBias, /*alpha=*/constOne);
|
||||
Value inputSubBias = rewriter.create<Torch::AtenSubScalarOp>(
|
||||
loc, inputType, input, constBias, /*alpha=*/constOne);
|
||||
Value inputGTLambd = rewriter.create<Torch::AtenGtScalarOp>(
|
||||
loc, inputType, input, constLambd);
|
||||
loc, comparisonResultType, input, constLambd);
|
||||
|
||||
Value inputSubBiasOrZero =
|
||||
rewriter.create<Torch::AtenWhereScalarOtherOp>(
|
||||
|
|
|
@ -2377,12 +2377,12 @@ func.func @Shrink(%arg0: !torch.vtensor<[5],f32>) -> !torch.vtensor<[5],f32> att
|
|||
// CHECK: %float0.000000e00 = torch.constant.float 0.000000e+00
|
||||
// CHECK: %float1.000000e00 = torch.constant.float 1.000000e+00
|
||||
// CHECK: %float-1.500000e00 = torch.constant.float -1.500000e+00
|
||||
// CHECK: %0 = torch.aten.lt.Scalar %arg0, %float-1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %0 = torch.aten.lt.Scalar %arg0, %float-1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],i1>
|
||||
// CHECK: %1 = torch.aten.add.Scalar %arg0, %float1.500000e00_0, %float1.000000e00 : !torch.vtensor<[5],f32>, !torch.float, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %2 = torch.aten.sub.Scalar %arg0, %float1.500000e00_0, %float1.000000e00 : !torch.vtensor<[5],f32>, !torch.float, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %3 = torch.aten.gt.Scalar %arg0, %float1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %4 = torch.aten.where.ScalarOther %3, %2, %float0.000000e00 : !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %5 = torch.aten.where.self %0, %1, %4 : !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32> -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %3 = torch.aten.gt.Scalar %arg0, %float1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],i1>
|
||||
// CHECK: %4 = torch.aten.where.ScalarOther %3, %2, %float0.000000e00 : !torch.vtensor<[5],i1>, !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %5 = torch.aten.where.self %0, %1, %4 : !torch.vtensor<[5],i1>, !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32> -> !torch.vtensor<[5],f32>
|
||||
// CHECK: return %5 : !torch.vtensor<[5],f32>
|
||||
%0 = torch.operator "onnx.Shrink"(%arg0) {torch.onnx.bias = 1.500000e+00 : f32, torch.onnx.lambd = 1.500000e+00 : f32} : (!torch.vtensor<[5],f32>) -> !torch.vtensor<[5],f32>
|
||||
return %0 : !torch.vtensor<[5],f32>
|
||||
|
@ -2397,12 +2397,12 @@ func.func @test_shrink_hard(%arg0: !torch.vtensor<[5],f32>) -> !torch.vtensor<[5
|
|||
// CHECK: %float0.000000e00_0 = torch.constant.float 0.000000e+00
|
||||
// CHECK: %float1.000000e00 = torch.constant.float 1.000000e+00
|
||||
// CHECK: %float-1.500000e00 = torch.constant.float -1.500000e+00
|
||||
// CHECK: %0 = torch.aten.lt.Scalar %arg0, %float-1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %0 = torch.aten.lt.Scalar %arg0, %float-1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],i1>
|
||||
// CHECK: %1 = torch.aten.add.Scalar %arg0, %float0.000000e00, %float1.000000e00 : !torch.vtensor<[5],f32>, !torch.float, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %2 = torch.aten.sub.Scalar %arg0, %float0.000000e00, %float1.000000e00 : !torch.vtensor<[5],f32>, !torch.float, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %3 = torch.aten.gt.Scalar %arg0, %float1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %4 = torch.aten.where.ScalarOther %3, %2, %float0.000000e00_0 : !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %5 = torch.aten.where.self %0, %1, %4 : !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32> -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %3 = torch.aten.gt.Scalar %arg0, %float1.500000e00 : !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],i1>
|
||||
// CHECK: %4 = torch.aten.where.ScalarOther %3, %2, %float0.000000e00_0 : !torch.vtensor<[5],i1>, !torch.vtensor<[5],f32>, !torch.float -> !torch.vtensor<[5],f32>
|
||||
// CHECK: %5 = torch.aten.where.self %0, %1, %4 : !torch.vtensor<[5],i1>, !torch.vtensor<[5],f32>, !torch.vtensor<[5],f32> -> !torch.vtensor<[5],f32>
|
||||
// CHECK: return %5 : !torch.vtensor<[5],f32>
|
||||
%0 = torch.operator "onnx.Shrink"(%arg0) {torch.onnx.lambd = 1.500000e+00 : f32} : (!torch.vtensor<[5],f32>) -> !torch.vtensor<[5],f32>
|
||||
return %0 : !torch.vtensor<[5],f32>
|
||||
|
|
Loading…
Reference in New Issue