Add aten.fill.Scalar op lowering

The lowering of aten.fill.Scalar has been added.
The changes have been made as a part of -torch-convert-to-linalg pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
pull/446/head
Prashant Kumar 2021-11-22 21:52:09 +05:30
parent 539511c19b
commit 36afa4a4d3
3 changed files with 90 additions and 1 deletions

View File

@ -758,3 +758,54 @@ class DropoutModule(torch.nn.Module):
@register_test_case(module_factory=lambda: DropoutModule())
def DropoutModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
class Fill_TensorFloat64WithFloat32(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3.0)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithFloat32())
def Fill_TensorFloat64WithFloat32_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4))
class Fill_TensorFloat64WithFloat64(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3.0)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithFloat64())
def Fill_TensorFloat64WithFloat64_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4).to(torch.float64))
class Fill_TensorFloat64WithInt64(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, tensor):
return torch.ops.aten.fill_(tensor, 3)
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithInt64())
def Fill_TensorFloat64WithInt64_basic(module, tu: TestUtils):
module.forward(torch.randn(3, 2, 4).to(torch.float64))

View File

@ -182,6 +182,14 @@ static Value createZeroInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
return b.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
}
// Creates a tensor with required `sizes` and `elemTy` and fills it with
// initElem.
static Value createInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy, Value initElem) {
Value initTensor = b.create<linalg::InitTensorOp>(loc, sizes, elemTy);
return b.create<linalg::FillOp>(loc, initElem, initTensor).getResult(0);
}
// Helper function to caculate the output tensor dims for convolution-like ops.
// Along each dim:
// dim_out =
@ -2782,6 +2790,33 @@ public:
};
} // namespace
namespace {
class ConvertAtenFill_ScalarOp : public OpConversionPattern<AtenFill_ScalarOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenFill_ScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
Value self = adaptor.self();
Value initVal = adaptor.value();
auto tensorType = self.getType().cast<RankedTensorType>();
Value initValCasted = convertScalarToDtype(rewriter, loc, initVal,
tensorType.getElementType());
Value result =
createInitTensor(rewriter, loc, getTensorSizes(rewriter, loc, self),
tensorType.getElementType(), initValCasted);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenBroadcastToOp : public OpConversionPattern<AtenBroadcastToOp> {
public:
@ -3064,6 +3099,8 @@ public:
patterns.add<ConvertPrimNumToTensorScalarOp>(typeConverter, context);
target.addIllegalOp<AtenDropoutOp>();
patterns.add<ConvertAtenDropoutOp>(typeConverter, context);
target.addIllegalOp<AtenFill_ScalarOp>();
patterns.add<ConvertAtenFill_ScalarOp>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))

View File

@ -92,7 +92,8 @@ public:
} else if (isa<AtenUnsqueezeOp, AtenFlattenUsingIntsOp,
AtenTransposeIntOp, TensorStaticInfoCastOp,
AtenBroadcastToOp, AtenToDtypeOp, AtenContiguousOp,
AtenPermuteOp, AtenViewOp, AtenExpandOp>(op)) {
AtenPermuteOp, AtenViewOp, AtenExpandOp,
AtenFill_ScalarOp>(op)) {
// AtenContiguousOp might return a view, so this is conservatively
// correct. We could potentially be more precise and identify the cases
// that it does not return a view and treat those as having value