mirror of https://github.com/llvm/torch-mlir
[ONNX][MLIR] Add support for onnx.gather op (#2726)
This commit adds support for gather op in the onnx pipeline. https://github.com/nod-ai/SHARK-Turbine/issues/242 Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>pull/2775/head
parent
704cfdaf08
commit
3b85c70748
|
@ -275,10 +275,9 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
|
|||
for (uint64_t i = 1; i < operands.size(); i++) {
|
||||
result = rewriter.create<Torch::AtenMaximumOp>(
|
||||
binder.getLoc(), resultType, result, operands[i]);
|
||||
}
|
||||
rewriter.replaceOp(
|
||||
binder.op, result.getDefiningOp());
|
||||
return success();
|
||||
}
|
||||
rewriter.replaceOp(binder.op, result.getDefiningOp());
|
||||
return success();
|
||||
});
|
||||
patterns.onOp("Min", 1,
|
||||
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
|
@ -334,6 +333,155 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
|
|||
binder.op, resultType, lhs, rhs);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp(
|
||||
"Gather", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
Torch::ValueTensorType resultType;
|
||||
Value data, indices;
|
||||
int64_t axis;
|
||||
if (binder.tensorOperandAtIndex(data, 0) ||
|
||||
binder.tensorOperandAtIndex(indices, 1) ||
|
||||
binder.tensorResultType(resultType) ||
|
||||
binder.s64IntegerAttr(axis, "axis", 0))
|
||||
return failure();
|
||||
Location loc = binder.getLoc();
|
||||
|
||||
// 1. Get data shape and rank.
|
||||
auto dataTensorType = data.getType().cast<Torch::ValueTensorType>();
|
||||
if (!dataTensorType || !dataTensorType.hasSizes()) {
|
||||
return rewriter.notifyMatchFailure(binder.op,
|
||||
"Expect non empty input data");
|
||||
}
|
||||
ArrayRef<int64_t> dataShape = dataTensorType.getSizes();
|
||||
unsigned dataRank = dataShape.size();
|
||||
|
||||
// 2. Get indices shape and rank.
|
||||
auto indexType = indices.getType().cast<Torch::ValueTensorType>();
|
||||
if (!indexType || !indexType.hasSizes()) {
|
||||
return rewriter.notifyMatchFailure(binder.op,
|
||||
"Expect non empty index tensor");
|
||||
}
|
||||
ArrayRef<int64_t> indexShape = indexType.getSizes();
|
||||
unsigned indexRank = indexShape.size();
|
||||
|
||||
// 3. Compute total elements in the indices tensor, as we will collapse
|
||||
// the indices tensor to a unary tensor. Also compute index shape and
|
||||
// data shape tensors as they will be used for creating output types.
|
||||
int64_t indexElemCount = 1;
|
||||
for (int64_t dim : indexShape) {
|
||||
if (dim == Torch::kUnknownSize) {
|
||||
indexElemCount = Torch::kUnknownSize;
|
||||
break;
|
||||
}
|
||||
indexElemCount *= dim;
|
||||
}
|
||||
|
||||
Value constOne = rewriter.create<Torch::ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(1));
|
||||
SmallVector<Value> indexShapeTensor;
|
||||
Value indexElemCountVal = constOne;
|
||||
for (unsigned i = 0; i < indexRank; ++i) {
|
||||
Value indexDimVal = rewriter.create<Torch::AtenSizeIntOp>(
|
||||
loc, indices,
|
||||
rewriter.create<Torch::ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(i)));
|
||||
indexShapeTensor.emplace_back(indexDimVal);
|
||||
indexElemCountVal = rewriter.create<Torch::AtenMulIntOp>(
|
||||
loc, indexElemCountVal, indexDimVal);
|
||||
}
|
||||
|
||||
SmallVector<Value> dataShapeTensor;
|
||||
for (unsigned i = 0; i < dataRank; ++i) {
|
||||
dataShapeTensor.emplace_back(rewriter.create<Torch::AtenSizeIntOp>(
|
||||
loc, data,
|
||||
rewriter.create<Torch::ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(i))));
|
||||
}
|
||||
|
||||
// 4. We can not directly perform torch.gather as the onnx.gather op
|
||||
// collects the input data at different location of output compared to
|
||||
// torch.gather op. The output of torch.gather and onnx.gather ops are
|
||||
// indexed differently.
|
||||
// check https://onnx.ai/onnx/operators/onnx__Gather.html for more
|
||||
// details. So we will collapse indices tensor to a unary tensor and
|
||||
// materialize to non-axis dimension of data tensor. For example,
|
||||
// assuming indices is of shape (4, 5, 6), data is (8, 10, 11, 12) and
|
||||
// axis=1. we will collapse indices into a (120,) unary tensor,
|
||||
// materialize to non-axis dimension of data i.e. reshaping the unary
|
||||
// indices tensor to (1, 120, 1, 1) and then perform the torch.gather
|
||||
// operation. Now broadcast the output of gather operation to non-axis
|
||||
// dimensions of data tensor. This would make the result of shape (8,
|
||||
// 10, 120, 12). Post the broadcasting, expand the indices dimensions by
|
||||
// reshaping (8, 10, 120, 12) to (8, 10, 4, 5, 6, 12) tensor, which is
|
||||
// our expected final result.
|
||||
SmallVector<int64_t> collapsedIndexShape(dataRank, 1);
|
||||
collapsedIndexShape[axis] = indexElemCount;
|
||||
Type collapsedIndexType = Torch::ValueTensorType::get(
|
||||
indexType.getContext(), llvm::ArrayRef(collapsedIndexShape),
|
||||
indexType.getOptionalDtype());
|
||||
|
||||
SmallVector<Value> collapsedIndexSize(dataRank, constOne);
|
||||
collapsedIndexSize[axis] = indexElemCountVal;
|
||||
auto collapsedIndexSizeList =
|
||||
rewriter.create<Torch::PrimListConstructOp>(
|
||||
loc,
|
||||
rewriter.getType<Torch::ListType>(
|
||||
rewriter.getType<Torch::IntType>()),
|
||||
collapsedIndexSize);
|
||||
|
||||
auto collapsedIndices = rewriter.create<Torch::AtenViewOp>(
|
||||
loc, collapsedIndexType, indices, collapsedIndexSizeList);
|
||||
|
||||
// 5. Compute gather result type and perform gather operation.
|
||||
Type gatherResultType = Torch::ValueTensorType::get(
|
||||
dataTensorType.getContext(), llvm::ArrayRef(collapsedIndexShape),
|
||||
dataTensorType.getOptionalDtype());
|
||||
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
|
||||
Value constFalse = rewriter.create<Torch::ConstantBoolOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
||||
rewriter.getBoolAttr(false));
|
||||
auto gatherOp = rewriter.create<Torch::AtenGatherOp>(
|
||||
loc, gatherResultType, data, constAxis, collapsedIndices,
|
||||
/*sparseGrad=*/constFalse);
|
||||
|
||||
// 6. Broadcast the gather output to non-axis dimensions of data tensor.
|
||||
SmallVector<int64_t> dataShapeVector(dataShape);
|
||||
dataShapeVector[axis] = indexElemCount;
|
||||
Type expandResultType = Torch::ValueTensorType::get(
|
||||
dataTensorType.getContext(), llvm::ArrayRef(dataShapeVector),
|
||||
dataTensorType.getOptionalDtype());
|
||||
|
||||
dataShapeTensor[axis] = indexElemCountVal;
|
||||
auto expandSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
||||
loc, Torch::ListType::get(Torch::IntType::get(data.getContext())),
|
||||
dataShapeTensor);
|
||||
auto expandedGather = rewriter.create<Torch::AtenExpandOp>(
|
||||
loc, expandResultType, gatherOp, expandSizeList,
|
||||
/*implicit=*/constFalse);
|
||||
|
||||
// 7. Compute the result type of reshape op which expands the collapsed
|
||||
// indices shapes back to the original indices shapes and reshape the
|
||||
// output produced at step 6. This will produce our expected result of
|
||||
// onnx.gather op.
|
||||
SmallVector<Value> resultShapeTensor;
|
||||
for (unsigned i = 0; i < dataRank; ++i) {
|
||||
if (i == axis) {
|
||||
resultShapeTensor.insert(resultShapeTensor.end(),
|
||||
indexShapeTensor.begin(),
|
||||
indexShapeTensor.end());
|
||||
continue;
|
||||
}
|
||||
resultShapeTensor.emplace_back(dataShapeTensor[i]);
|
||||
}
|
||||
auto resultSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
||||
loc, Torch::ListType::get(Torch::IntType::get(data.getContext())),
|
||||
resultShapeTensor);
|
||||
|
||||
rewriter.replaceOpWithNewOp<Torch::AtenViewOp>(
|
||||
binder.op, resultType, expandedGather, resultSizeList);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp(
|
||||
"GatherElements", 13,
|
||||
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
|
|
|
@ -37,6 +37,43 @@ func.func @test_less(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[
|
|||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_gather
|
||||
func.func @test_gather(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[8,10,20,40], si64>) -> !torch.vtensor<[8,10,20,40,4,5],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
|
||||
// CHECK-DAG: %[[INT1:.+]] = torch.constant.int 1
|
||||
// CHECK-DAG: %[[INT0:.+]] = torch.constant.int 0
|
||||
// CHECK: %[[ARG1_SIZE0:.+]] = torch.aten.size.int %arg1, %[[INT0]]
|
||||
// CHECK: %[[MUL1:.+]] = torch.aten.mul.int %[[INT1]], %[[ARG1_SIZE0]]
|
||||
// CHECK: %[[INT1_0:.+]] = torch.constant.int 1
|
||||
// CHECK: %[[ARG1_SIZE1:.+]] = torch.aten.size.int %arg1, %[[INT1_0]]
|
||||
// CHECK: %[[MUL2:.+]] = torch.aten.mul.int %[[MUL1]], %[[ARG1_SIZE1]]
|
||||
// CHECK-DAG: %[[INT2:.+]] = torch.constant.int 2
|
||||
// CHECK: %[[ARG1_SIZE2:.+]] = torch.aten.size.int %arg1, %[[INT2]] : !torch.vtensor<[8,10,20,40],si64>, !torch.int -> !torch.int
|
||||
// CHECK: %[[MUL3:.+]] = torch.aten.mul.int %[[MUL2]], %[[ARG1_SIZE2]] : !torch.int, !torch.int -> !torch.int
|
||||
// CHECK-DAG: %[[INT3:.+]] = torch.constant.int 3
|
||||
// CHECK: %[[ARG1_SIZE3:.+]] = torch.aten.size.int %arg1, %[[INT3]] : !torch.vtensor<[8,10,20,40],si64>, !torch.int -> !torch.int
|
||||
// CHECK: %[[MUL4:.+]] = torch.aten.mul.int %[[MUL3]], %[[ARG1_SIZE3]] : !torch.int, !torch.int -> !torch.int
|
||||
// CHECK: %[[INT0_2:.+]] = torch.constant.int 0
|
||||
// CHECK: %[[ARG0_SIZE0:.+]] = torch.aten.size.int %arg0, %[[INT0_2]] : !torch.vtensor<[3,4,5],f32>, !torch.int -> !torch.int
|
||||
// CHECK: %[[INT1_3:.+]] = torch.constant.int 1
|
||||
// CHECK: %[[ARG0_SIZE1:.+]] = torch.aten.size.int %arg0, %[[INT1_3]] : !torch.vtensor<[3,4,5],f32>, !torch.int -> !torch.int
|
||||
// CHECK: %[[INT2_4:.+]] = torch.constant.int 2
|
||||
// CHECK: %[[ARG0_SIZE2:.+]] = torch.aten.size.int %arg0, %[[INT2_4]] : !torch.vtensor<[3,4,5],f32>, !torch.int -> !torch.int
|
||||
// CHECK: %[[LIST1:.+]] = torch.prim.ListConstruct %[[MUL4]], %[[INT1]], %[[INT1]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
|
||||
// CHECK: %[[VIEW1:.+]] = torch.aten.view %arg1, %[[LIST1]] : !torch.vtensor<[8,10,20,40],si64>, !torch.list<int> -> !torch.vtensor<[64000,1,1],si64>
|
||||
// CHECK: %[[INT0_1:.+]] = torch.constant.int 0
|
||||
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
|
||||
// CHECK: %[[GATHER:.+]] = torch.aten.gather %arg0, %[[INT0_1]], %[[VIEW1]], %[[FALSE]] : !torch.vtensor<[3,4,5],f32>, !torch.int, !torch.vtensor<[64000,1,1],si64>, !torch.bool -> !torch.vtensor<[64000,1,1],f32>
|
||||
// CHECK: %[[LIST2:.+]] = torch.prim.ListConstruct %[[MUL4]], %[[ARG0_SIZE1]], %[[ARG0_SIZE2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
|
||||
// CHECK: %[[EXPAND:.+]] = torch.aten.expand %[[GATHER]], %[[LIST2]], %[[FALSE]] : !torch.vtensor<[64000,1,1],f32>, !torch.list<int>, !torch.bool -> !torch.vtensor<[64000,4,5],f32>
|
||||
// CHECK: %[[LIST3:.+]] = torch.prim.ListConstruct %[[ARG1_SIZE0]], %[[ARG1_SIZE1]], %[[ARG1_SIZE2]], %[[ARG1_SIZE3]], %[[ARG0_SIZE1]], %[[ARG0_SIZE2]] : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
|
||||
// CHECK: %[[RES:.+]] = torch.aten.view %[[EXPAND]], %[[LIST3]] : !torch.vtensor<[64000,4,5],f32>, !torch.list<int> -> !torch.vtensor<[8,10,20,40,4,5],f32>
|
||||
// CHECK: return %[[RES]] : !torch.vtensor<[8,10,20,40,4,5],f32>
|
||||
%0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[8,10,20,40], si64>) -> !torch.vtensor<[8,10,20,40,4,5],f32>
|
||||
return %0 : !torch.vtensor<[8,10,20,40,4,5],f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_gather_elements
|
||||
func.func @test_gather_elements(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5], si64>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
|
||||
// CHECK-DAG: %[[INT0:.+]] = torch.constant.int 0
|
||||
|
|
Loading…
Reference in New Issue