[onnx] Support `fp8` for `onnx.QuantizeLinear` (#3619)

We need to directly decompose quantize linear for `fp8` types as the
equivalent torch operations do not support the operation.
pull/3292/merge
Rob Suderman 2024-08-09 12:32:46 -07:00 committed by GitHub
parent 8358e8c255
commit 44266ab0c4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 66 additions and 20 deletions

View File

@ -214,6 +214,7 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.tensorResultType(resultType))
return failure();
auto loc = binder.getLoc();
Value operand = operands[0];
Value scale = operands[1];
Value zeropoint = operands[2];
@ -225,33 +226,61 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
return rewriter.notifyMatchFailure(binder.op,
"requires known result dtype");
if (scaleTy.getSizes().size() == 0) {
auto qTensorTy = getQTorchTypeFromTorchIntType(resultType);
if (!qTensorTy) {
return rewriter.notifyMatchFailure(binder.op,
"unsupported result dtype");
}
auto resultETy = resultType.getDtype();
auto torchqTy = Torch::getScalarTypeForType(qTensorTy.getDtype());
bool rank0 = scaleTy.getSizes().size() == 0;
bool length1 =
scaleTy.getSizes().size() == 1 && scaleTy.getSizes()[0] == 1;
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
static_cast<int64_t>(torchqTy)));
if (!rank0 && !length1)
return rewriter.notifyMatchFailure(binder.op,
"unimplemented: non-scalar scale");
scale = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(), scale);
zeropoint = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), zeropoint);
auto qTensorTy = getQTorchTypeFromTorchIntType(resultType);
if (!qTensorTy) {
return rewriter.notifyMatchFailure(binder.op,
"unsupported result dtype");
}
auto quantize = rewriter.create<Torch::AtenQuantizePerTensorOp>(
binder.getLoc(), qTensorTy, operand, scale, zeropoint, tyConst);
rewriter.replaceOpWithNewOp<Torch::AtenIntReprOp>(
binder.op, resultType, quantize);
auto torchqTy = Torch::getScalarTypeForType(qTensorTy.getDtype());
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
static_cast<int64_t>(torchqTy)));
scale = rewriter.create<Torch::AtenItemOp>(
loc, rewriter.getType<Torch::FloatType>(), scale);
bool fpResult = isa<mlir::FloatType>(resultETy);
Type zeropointTy = rewriter.getType<Torch::IntType>();
if (fpResult)
zeropointTy = rewriter.getType<Torch::FloatType>();
zeropoint =
rewriter.create<Torch::AtenItemOp>(loc, zeropointTy, zeropoint);
if (fpResult) {
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value one = rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(1.0));
Value div = rewriter.create<Torch::AtenDivScalarOp>(
loc, operand.getType(), operand, scale);
Value add = rewriter.create<Torch::AtenAddScalarOp>(
loc, operand.getType(), div, zeropoint, one);
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
binder.op, resultType, add, tyConst,
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
/*memory_format=*/none);
return success();
}
return failure();
auto quantize = rewriter.create<Torch::AtenQuantizePerTensorOp>(
loc, qTensorTy, operand, scale, zeropoint, tyConst);
rewriter.replaceOpWithNewOp<Torch::AtenIntReprOp>(binder.op, resultType,
quantize);
return success();
});
patterns.onOp(
"QLinearConv", 1,

View File

@ -47,6 +47,23 @@ func.func @test_quantizelinear_i32(%arg0: !torch.vtensor<[6],f32>, %arg1: !torch
// -----
// CHECK-LABEL: @test_quantizelinear_f8
func.func @test_quantizelinear_f8(%arg0: !torch.vtensor<[6],f32>, %arg1: !torch.vtensor<[],f32>, %arg2: !torch.vtensor<[],f32>) -> !torch.vtensor<[6],f8E4M3FN> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64} {
// CHECK: %[[DTYPE:.+]] = torch.constant.int 24
// CHECK: %[[SCALE:.+]] = torch.aten.item %arg1 : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[ZP:.+]] = torch.aten.item %arg2 : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[ONE:.+]] = torch.constant.float 1.000000e+00
// CHECK: %[[DIV:.+]] = torch.aten.div.Scalar %arg0, %[[SCALE]]
// CHECK: %[[ADD:.+]] = torch.aten.add.Scalar %[[DIV]], %[[ZP]], %[[ONE]]
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %[[ADD]], %[[DTYPE]], %[[FALSE]], %[[FALSE]], %[[NONE]]
%0 = torch.operator "onnx.QuantizeLinear"(%arg0, %arg1, %arg2) : (!torch.vtensor<[6],f32>, !torch.vtensor<[],f32>, !torch.vtensor<[],f32>) -> !torch.vtensor<[6],f8E4M3FN>
return %0 : !torch.vtensor<[6],f8E4M3FN>
}
// -----
// CHECK-LABEL: @test_qlinearconv_nobias
func.func @test_qlinearconv_nobias(%arg0: !torch.vtensor<[1,1,7,7],ui8>, %arg1: !torch.vtensor<[],f32>, %arg2: !torch.vtensor<[],ui8>, %arg3: !torch.vtensor<[1,1,1,1],ui8>, %arg4: !torch.vtensor<[1],f32>, %arg5: !torch.vtensor<[1],ui8>, %arg6: !torch.vtensor<[],f32>, %arg7: !torch.vtensor<[],ui8>) -> !torch.vtensor<[1,1,7,7],ui8> attributes {torch.onnx_meta.ir_version = 5 : si64, torch.onnx_meta.opset_version = 10 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
%0 = torch.operator "onnx.QLinearConv"(%arg0, %arg1, %arg2, %arg3, %arg4, %arg5, %arg6, %arg7) : (!torch.vtensor<[1,1,7,7],ui8>, !torch.vtensor<[],f32>, !torch.vtensor<[],ui8>, !torch.vtensor<[1,1,1,1],ui8>, !torch.vtensor<[1],f32>, !torch.vtensor<[1],ui8>, !torch.vtensor<[],f32>, !torch.vtensor<[],ui8>) -> !torch.vtensor<[1,1,7,7],ui8>