mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add E2E support for aten.mean and aten.numel op.
This commit adds lowering of `aten.mean` and `aten.numel` op. Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>pull/435/head snapshot-20211202.119
parent
5475d02a0d
commit
46a0668b3b
|
@ -739,7 +739,6 @@ class AddCDivModule(torch.nn.Module):
|
|||
def AddCDivModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(1,3), tu.rand(1,3), tu.rand(1,3))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class DropoutModule(torch.nn.Module):
|
||||
|
@ -751,6 +750,7 @@ class DropoutModule(torch.nn.Module):
|
|||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, x):
|
||||
return torch.dropout(x, 0.0, False)
|
||||
|
||||
|
@ -809,3 +809,75 @@ class Fill_TensorFloat64WithInt64(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: Fill_TensorFloat64WithInt64())
|
||||
def Fill_TensorFloat64WithInt64_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randn(3, 2, 4).to(torch.float64))
|
||||
|
||||
|
||||
class MeanModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([3, 4], torch.float32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.mean(x)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: MeanModule())
|
||||
def MeanModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randn(3, 4))
|
||||
|
||||
|
||||
class MeanDynamicSizesModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.mean(x)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: MeanDynamicSizesModule())
|
||||
def MeanDynamicSizesModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randn(3, 4))
|
||||
|
||||
|
||||
class NumelModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, input):
|
||||
return torch.numel(input)
|
||||
|
||||
@register_test_case(module_factory=lambda: NumelModule())
|
||||
def NumelModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4, 3, 5))
|
||||
|
||||
|
||||
class NumelZeroRankModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([], torch.int64, True),
|
||||
])
|
||||
|
||||
def forward(self, input):
|
||||
return torch.numel(input)
|
||||
|
||||
@register_test_case(module_factory=lambda: NumelZeroRankModule())
|
||||
def NumelZeroRankModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(10,[]))
|
||||
|
|
|
@ -103,3 +103,22 @@ class ReduceSumDimIntListKeepDimModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: ReduceSumDimIntListKeepDimModule())
|
||||
def ReduceSumDimIntListKeepDimModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4, 5))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class ReduceMeanDtypeModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1, -1], torch.float64, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.mean(a, dtype=torch.float32)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ReduceMeanDtypeModule())
|
||||
def ReduceMeanDtypeModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4, 5).to(torch.float64))
|
||||
|
|
|
@ -3062,3 +3062,17 @@ def Torch_AtenAddCDivOp : Torch_Op<"aten.addcdiv", [
|
|||
let assemblyFormat = "$self `,` $tensor1 `,` $tensor2 `,` $value attr-dict `:` type($self) `,` type($tensor1) `,` type($tensor2) `,` type($value) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenMeanOp : Torch_Op<"aten.mean", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
]> {
|
||||
let summary = "Generated op for `aten::mean : (Tensor, int?) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
TorchOptionalIntType:$dtype
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self `,` $dtype attr-dict `:` type($self) `,` type($dtype) `->` type($result)";
|
||||
}
|
||||
|
|
|
@ -3130,6 +3130,29 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class ConvertAtenNumelOp : public OpConversionPattern<AtenNumelOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(AtenNumelOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
return failure();
|
||||
Location loc = op.getLoc();
|
||||
Value self = adaptor.self();
|
||||
SmallVector<Value> sizes(getTensorSizes(rewriter, loc, self));
|
||||
Value productResult =
|
||||
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
|
||||
for (int i = 0; i < sizes.size(); i++)
|
||||
productResult =
|
||||
rewriter.create<arith::MulIOp>(loc, productResult, sizes[i]);
|
||||
rewriter.replaceOp(op, castIndexToInt(rewriter, loc, productResult));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// The pass
|
||||
// -----------------------------------------------------------------------------
|
||||
|
@ -3223,6 +3246,8 @@ public:
|
|||
patterns.add<ConvertAtenDropoutOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenFill_ScalarOp>();
|
||||
patterns.add<ConvertAtenFill_ScalarOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenNumelOp>();
|
||||
patterns.add<ConvertAtenNumelOp>(typeConverter, context);
|
||||
|
||||
if (failed(applyPartialConversion(getOperation(), target,
|
||||
std::move(patterns))))
|
||||
|
|
|
@ -419,6 +419,27 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
// Decompose torch.mean into: sum(x)/div(numTensorElements).
|
||||
namespace {
|
||||
class DecomposeAtenMeanOp : public OpRewritePattern<AtenMeanOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenMeanOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value input = op.self();
|
||||
Value output = op.result();
|
||||
BaseTensorType inputTensorType = input.getType().cast<BaseTensorType>();
|
||||
BaseTensorType outputTensorType = output.getType().cast<BaseTensorType>();
|
||||
Value sum = rewriter.create<AtenSumOp>(loc, outputTensorType, input, op.dtype());
|
||||
Value numTensorElements = rewriter.create<AtenNumelOp>(loc, input);
|
||||
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputTensorType, sum,
|
||||
numTensorElements);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
template<typename OpTy, typename T1T2Op>
|
||||
class DecomposeAtenAddCLikeOp : public OpRewritePattern<OpTy> {
|
||||
|
@ -464,6 +485,8 @@ class DecomposeComplexOpsPass
|
|||
target.addIllegalOp<AtenTanhBackwardOp>();
|
||||
patterns.add<DecomposeAtenAddmmOp>(context);
|
||||
target.addIllegalOp<AtenAddmmOp>();
|
||||
patterns.add<DecomposeAtenMeanOp>(context);
|
||||
target.addIllegalOp<AtenMeanOp>();
|
||||
patterns.add<DecomposeAtenMatmulOp>(context);
|
||||
patterns.add<DecomposeAten_LogSoftmaxBackwardDataOp>(context);
|
||||
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
|
||||
|
|
|
@ -438,6 +438,11 @@ public:
|
|||
return visitAtenBmmOp(bmm, operands);
|
||||
} else if (auto matmul = dyn_cast<AtenMatmulOp>(op)) {
|
||||
return visitAtenMatmulOp(matmul, operands);
|
||||
} else if (auto mean = dyn_cast<AtenMeanOp>(op)) {
|
||||
Type defaultDtype = operands[0]->getValue().dtype;
|
||||
Type dtype =
|
||||
getDtypeOrDefault(mean.getContext(), mean.dtype(), defaultDtype);
|
||||
return visitReductionAlongAllDimsOp(mean, dtype, operands);
|
||||
} else if (auto softmaxIntOp = dyn_cast<AtenSoftmaxIntOp>(op)) {
|
||||
return visitAtenSoftmaxLikeOp(softmaxIntOp, operands);
|
||||
} else if (auto _softmaxOp = dyn_cast<Aten_SoftmaxOp>(op)) {
|
||||
|
@ -563,7 +568,7 @@ private:
|
|||
ChangeResult
|
||||
visitAtenMatmulOp(AtenMatmulOp op,
|
||||
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||
|
||||
|
||||
template <typename OpTy>
|
||||
ChangeResult
|
||||
visitAtenSoftmaxLikeOp(OpTy op,
|
||||
|
|
|
@ -520,6 +520,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
|||
emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::sqrt : (Tensor) -> (Tensor)")
|
||||
emit("aten::_softmax : (Tensor, int, bool) -> (Tensor)")
|
||||
emit("aten::mean : (Tensor, int?) -> (Tensor)")
|
||||
|
||||
# Misc tensor ops.
|
||||
emit("aten::unsqueeze : (Tensor, int) -> (Tensor)")
|
||||
|
|
Loading…
Reference in New Issue