Add lowering of `aten.Int.Tensor` op.

The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
pull/375/head snapshot-20211101.58
Prashant Kumar 2021-10-28 05:05:01 +00:00
parent 69eaf9a154
commit 53b4275ef5
5 changed files with 73 additions and 0 deletions

View File

@ -493,3 +493,22 @@ class ContiguousModule(torch.nn.Module):
@register_test_case(module_factory=lambda: ContiguousModule())
def ContiguousModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 1))
class TensorToInt(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([], torch.int64, True),
([], torch.float32, True),
])
def forward(self, x, y):
# This is a workaround for not returning scalar value.
a = int(x)
return y.add(y, alpha=a)
@register_test_case(module_factory=lambda: TensorToInt())
def TensorToInt_basic(module, tu: TestUtils):
module.forward(torch.randint(10,[]), tu.rand())

View File

@ -1948,6 +1948,20 @@ def Torch_AtenTensorFloatOp : Torch_Op<"aten.tensor.float", [
let assemblyFormat = "$t `,` $dtype `,` $device `,` $requires_grad attr-dict `:` type($t) `,` type($dtype) `,` type($device) `,` type($requires_grad) `->` type($result)";
}
def Torch_AtenIntTensorOp : Torch_Op<"aten.Int.Tensor", [
AllowsTypeRefinement,
HasValueSemantics
]> {
let summary = "Generated op for `aten::Int.Tensor : (Tensor) -> (int)`";
let arguments = (ins
AnyTorchTensorType:$a
);
let results = (outs
Torch_IntType:$result
);
let assemblyFormat = "$a attr-dict `:` type($a) `->` type($result)";
}
def Torch_Aten__Contains__StrOp : Torch_Op<"aten.__contains__.str", [
AllowsTypeRefinement,
HasValueSemantics

View File

@ -2547,6 +2547,30 @@ public:
};
} // namespace
// Casts a 0d integer tensor to elemental type.
namespace {
class ConvertAtenIntTensorOp : public OpConversionPattern<AtenIntTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenIntTensorOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
AtenIntTensorOp::Adaptor adaptor(operands);
Value intTensor = adaptor.a();
auto tensorType = intTensor.getType().cast<RankedTensorType>();
if (tensorType.getRank() != 0)
return rewriter.notifyMatchFailure(
op, "invalid rank: the rank of the input tensor must be 0");
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, intTensor);
return success();
}
};
} // namespace
namespace {
class ConvertAtenBroadcastToOp : public OpConversionPattern<AtenBroadcastToOp> {
public:
@ -2797,6 +2821,8 @@ public:
patterns.add<ConvertAtenOnesOp>(typeConverter, context);
target.addIllegalOp<AtenContiguousOp>();
patterns.add<ConvertAtenContiguousOp>(typeConverter, context);
target.addIllegalOp<AtenIntTensorOp>();
patterns.add<ConvertAtenIntTensorOp>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))

View File

@ -555,6 +555,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
emit("aten::gather : (Tensor, int, Tensor, bool) -> (Tensor)")
emit("aten::IntImplicit : (Tensor) -> (int)")
emit("aten::tensor.float : (float, int?, Device?, bool) -> (Tensor)")
emit("aten::Int.Tensor : (Tensor) -> (int)")
# Dict ops.
emit("aten::__contains__.str : (Dict(str, t), str) -> (bool)", has_folder=True)

View File

@ -54,3 +54,16 @@ func @torch.aten.mm$no_convert$result_missing_dtype(%arg0: !torch.vtensor<[?,?],
%0 = torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor
return %0 : !torch.vtensor
}
// -----
// CHECK-LABEL: func @integer_extract
// CHECK-SAME: (%[[A:.*]]: !torch.vtensor<[],si64>) -> !torch.int {
// CHECK: %[[B:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[],si64> -> tensor<i64>
// CHECK: %[[EXT:.*]] = tensor.extract %[[B]][] : tensor<i64>
// CHECK: %[[RET:.*]] = torch_c.from_i64 %[[EXT]]
// CHECK: return %[[RET]] : !torch.int
func @integer_extract(%arg0: !torch.vtensor<[],si64>) -> !torch.int {
%0 = torch.aten.Int.Tensor %arg0 : !torch.vtensor<[],si64> -> !torch.int
return %0 : !torch.int
}