mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add E2E support for aten.polar op (#3671)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>pull/3685/head
parent
3180704b14
commit
567ed44fd0
|
@ -5332,6 +5332,30 @@ def Torch_AtenSoftshrinkOp : Torch_Op<"aten.softshrink", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenPolarOp : Torch_Op<"aten.polar", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::polar : (Tensor, Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$abs,
|
||||
AnyTorchTensorType:$angle
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenPolarOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenPolarOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenUnbindCopyIntOp : Torch_Op<"aten.unbind_copy.int", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -3295,6 +3295,72 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class ConvertAtenPolarOp : public OpConversionPattern<AtenPolarOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(AtenPolarOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
return failure();
|
||||
|
||||
Location loc = op.getLoc();
|
||||
const TypeConverter *typeConverter = getTypeConverter();
|
||||
MLIRContext *context = rewriter.getContext();
|
||||
|
||||
Value absTensor = adaptor.getAbs();
|
||||
Value angleTensor = adaptor.getAngle();
|
||||
|
||||
RankedTensorType resultType =
|
||||
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
|
||||
auto elementType = resultType.getElementType();
|
||||
|
||||
SmallVector<Value> resultShape;
|
||||
for (int64_t i = 0; i < resultType.getRank(); i++) {
|
||||
auto currentDimSize = rewriter.create<tensor::DimOp>(loc, absTensor, i);
|
||||
resultShape.push_back(currentDimSize);
|
||||
}
|
||||
|
||||
Value outTensor = rewriter.create<tensor::EmptyOp>(
|
||||
loc, getAsOpFoldResult(resultShape), elementType);
|
||||
|
||||
SmallVector<AffineExpr> outputExpr;
|
||||
for (unsigned i = 0; i < resultType.getRank(); i++) {
|
||||
outputExpr.push_back(getAffineDimExpr(i, context));
|
||||
}
|
||||
|
||||
AffineMap identityMap =
|
||||
AffineMap::get(resultType.getRank(), 0, outputExpr, op->getContext());
|
||||
|
||||
SmallVector<AffineMap> indexingMaps{identityMap, identityMap, identityMap};
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
resultType.getRank(), utils::IteratorType::parallel);
|
||||
auto complexVar =
|
||||
rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, outTensor.getType(), ValueRange{absTensor, angleTensor},
|
||||
outTensor, indexingMaps, iteratorTypes,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
// out = abs⋅cos(angle) + abs⋅sin(angle)⋅j
|
||||
Value abs = args[0];
|
||||
Value angle = args[1];
|
||||
Value realVal = b.create<math::CosOp>(loc, angle);
|
||||
Value imagVal = b.create<math::SinOp>(loc, angle);
|
||||
realVal = b.create<arith::MulFOp>(loc, abs, realVal);
|
||||
imagVal = b.create<arith::MulFOp>(loc, abs, imagVal);
|
||||
Value complexVal = b.create<complex::CreateOp>(
|
||||
loc, elementType, realVal, imagVal);
|
||||
b.create<linalg::YieldOp>(loc, complexVal);
|
||||
})
|
||||
.getResult(0);
|
||||
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, complexVar);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
|
||||
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
||||
ConversionTarget &target) {
|
||||
|
@ -3355,4 +3421,6 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
|
|||
patterns.add<ConvertInterpolateOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenLinalgDetOp>();
|
||||
patterns.add<ConvertAtenLinalgDetOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenPolarOp>();
|
||||
patterns.add<ConvertAtenPolarOp>(typeConverter, context);
|
||||
}
|
||||
|
|
|
@ -6715,6 +6715,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.polar\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.mish\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -11276,6 +11280,44 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.polar\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %int9 = torch.constant.int 9\n"
|
||||
" %int6 = torch.constant.int 6\n"
|
||||
" %int10 = torch.constant.int 10\n"
|
||||
" %int7 = torch.constant.int 7\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||
" %false = torch.constant.bool false\n"
|
||||
" %true = torch.constant.bool true\n"
|
||||
" %0 = torch.prim.Uninitialized : !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %2:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %3 = torch.aten.eq.int %1#1, %2#1 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" torch.prim.If %3 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" %4 = torch.aten.eq.int %1#1, %int7 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %5:2 = torch.prim.If %4 -> (!torch.bool, !torch.int) {\n"
|
||||
" torch.prim.If.yield %true, %int10 : !torch.bool, !torch.int\n"
|
||||
" } else {\n"
|
||||
" %7 = torch.aten.eq.int %1#1, %int6 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %8:2 = torch.prim.If %7 -> (!torch.bool, !torch.int) {\n"
|
||||
" torch.prim.If.yield %true, %int9 : !torch.bool, !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %false, %0 : !torch.bool, !torch.int\n"
|
||||
" }\n"
|
||||
" torch.prim.If.yield %8#0, %8#1 : !torch.bool, !torch.int\n"
|
||||
" }\n"
|
||||
" %6 = torch.prim.If %5#0 -> (!torch.int) {\n"
|
||||
" torch.prim.If.yield %5#1 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %1#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" return %6 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.logit\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.optional<float>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
|
|
|
@ -2428,6 +2428,8 @@ ONNX_XFAIL_SET = {
|
|||
"AtenMmQMixedSigni8_basic",
|
||||
"AtenMmQint8_basic",
|
||||
"AtenMmQuint8_basic",
|
||||
"AtenPolarFloatModule_basic",
|
||||
"AtenPolarDoubleModule_basic",
|
||||
"AtenRealView128Module_basic",
|
||||
"AtenRealView64Module_basic",
|
||||
"AtenSubFloatModule_basic",
|
||||
|
@ -3794,6 +3796,8 @@ ONNX_TOSA_XFAIL_SET = {
|
|||
"AtenMmQMixedSigni8_basic",
|
||||
"AtenMmQint8_basic",
|
||||
"AtenMmQuint8_basic",
|
||||
"AtenPolarFloatModule_basic",
|
||||
"AtenPolarDoubleModule_basic",
|
||||
"AtenRealView128Module_basic",
|
||||
"AtenRealView64Module_basic",
|
||||
"AtenRoundFloatHalfToEvenModule_basic",
|
||||
|
|
|
@ -322,6 +322,9 @@ def aten〇hardshrink〡shape(self: List[int], lambd: float = 0.5) -> List[int]:
|
|||
def aten〇softshrink〡shape(self: List[int], lambd: float = 0.5) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇polar〡shape(abs: List[int], angle: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(abs)
|
||||
|
||||
def aten〇mish〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -2595,6 +2598,17 @@ def aten〇softshrink〡dtype(self_rank_dtype: Tuple[int, int], lambd: Union[int
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
|
||||
def aten〇polar〡dtype(abs_rank_dtype: Tuple[int, int], angle_rank_dtype: Tuple[int, int]) -> int:
|
||||
_, abs_dtype = abs_rank_dtype
|
||||
_, angle_dtype = angle_rank_dtype
|
||||
assert (abs_dtype == angle_dtype)
|
||||
if abs_dtype == torch.float64:
|
||||
return torch.complex128
|
||||
elif abs_dtype == torch.float32:
|
||||
return torch.complex64
|
||||
return abs_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇logit〡dtype(self_rank_dtype: Tuple[int, int], eps: Optional[float] = None) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
|
|
|
@ -501,6 +501,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::log_sigmoid : (Tensor) -> (Tensor)")
|
||||
emit("aten::hardshrink : (Tensor, Scalar) -> (Tensor)")
|
||||
emit("aten::softshrink : (Tensor, Scalar) -> (Tensor)")
|
||||
emit("aten::polar : (Tensor, Tensor) -> (Tensor)")
|
||||
|
||||
# Ops with dynamic number of outputs
|
||||
emit("aten::unbind_copy.int : (Tensor, int) -> (Tensor[])")
|
||||
|
|
|
@ -5761,3 +5761,55 @@ class UnfoldModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: UnfoldModule())
|
||||
def UnfoldModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 5, 3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenPolarFloatModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.unfold = torch.nn.Unfold(kernel_size=(2, 3))
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1, -1, -1], torch.float32, True),
|
||||
([-1, -1, -1, -1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, abs_, angle):
|
||||
return torch.ops.aten.polar(torch.ops.aten.abs(abs_), angle)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenPolarFloatModule())
|
||||
def AtenPolarFloatModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 5, 3, 4), tu.rand(2, 5, 3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenPolarDoubleModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.unfold = torch.nn.Unfold(kernel_size=(2, 3))
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1, -1, -1], torch.float64, True),
|
||||
([-1, -1, -1, -1], torch.float64, True),
|
||||
]
|
||||
)
|
||||
def forward(self, abs_, angle):
|
||||
return torch.ops.aten.polar(torch.ops.aten.abs(abs_), angle)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenPolarDoubleModule())
|
||||
def AtenPolarDoubleModule_basic(module, tu: TestUtils):
|
||||
module.forward(
|
||||
tu.rand(2, 5, 3, 4).to(torch.float64), tu.rand(2, 5, 3, 4).to(torch.float64)
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue