mirror of https://github.com/llvm/torch-mlir
[Torch] emit aten.celu and decompose it (#3247)
CELU(x)=max(0,x)+min(0,α∗(exp(x/α)−1))pull/3256/head
parent
46c0f3cad0
commit
5684dc0441
|
@ -4810,6 +4810,53 @@ def Torch_AtenPreluOp : Torch_Op<"aten.prelu", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenCeluOp : Torch_Op<"aten.celu", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::celu : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchScalarType:$alpha
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenCeluOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenCeluOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenCelu_Op : Torch_Op<"aten.celu_", [
|
||||
IsTrailingUnderscoreInplaceVariant,
|
||||
AllowsTypeRefinement
|
||||
]> {
|
||||
let summary = "Generated op for `aten::celu_ : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
Torch_NonValueTensorType:$self,
|
||||
AnyTorchScalarType:$alpha
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalNonValueTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenCelu_Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenCelu_Op::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenRealOp : Torch_Op<"aten.real", [
|
||||
AllowsTypeRefinement,
|
||||
ReadOnly
|
||||
|
|
|
@ -6998,6 +6998,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.celu\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.selu\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -10480,6 +10484,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %0#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.celu\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" return %0#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.relu6\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||
|
|
|
@ -2415,6 +2415,50 @@ public:
|
|||
|
||||
} // namespace
|
||||
|
||||
// CELU(x)=max(0,x)+min(0,alpha∗(exp(x/alpha)−1))
|
||||
namespace {
|
||||
class DecomposeAtenCeluOp : public OpRewritePattern<AtenCeluOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenCeluOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value input = op.getSelf();
|
||||
Value alpha = op.getAlpha();
|
||||
auto resType = cast<BaseTensorType>(op.getType());
|
||||
if (!resType.hasDtype()) {
|
||||
return rewriter.notifyMatchFailure(op, "result should have dtype");
|
||||
}
|
||||
|
||||
Value constantZero =
|
||||
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
||||
Value constantOne =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
|
||||
|
||||
// positiveOutput = max(0,x)
|
||||
Value zeroTensor = createRank0Tensor(rewriter, loc, resType, constantZero);
|
||||
Value positiveOutput =
|
||||
rewriter.create<AtenMaximumOp>(loc, resType, zeroTensor, input);
|
||||
|
||||
// negativeOutput = min(0,alpha∗(exp(x/alpha)−1))
|
||||
Value scaledInput =
|
||||
rewriter.create<AtenDivScalarOp>(loc, resType, input, alpha);
|
||||
Value expX = rewriter.create<AtenExpOp>(loc, resType, scaledInput);
|
||||
Value expXM1 = rewriter.create<AtenSubScalarOp>(loc, resType, expX,
|
||||
constantOne, constantOne);
|
||||
Value scaledExpXM1 =
|
||||
rewriter.create<AtenMulScalarOp>(loc, resType, expXM1, alpha);
|
||||
Value negativeOutput =
|
||||
rewriter.create<AtenMinimumOp>(loc, resType, zeroTensor, scaledExpXM1);
|
||||
Value celuOutput = rewriter.create<AtenAddTensorOp>(
|
||||
loc, resType, positiveOutput, negativeOutput, constantOne);
|
||||
|
||||
rewriter.replaceOp(op, celuOutput);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenLerpScalarOp : public OpRewritePattern<AtenLerpScalarOp> {
|
||||
public:
|
||||
|
@ -7705,6 +7749,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenHardsigmoidOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRelu6Op>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenPreluOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenCeluOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenEinsumOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTraceOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenHardswishOp>(patterns);
|
||||
|
|
|
@ -474,6 +474,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<Aten_UnsafeIndexPutHackedTwinOp>();
|
||||
target.addIllegalOp<AtenPadOp>();
|
||||
target.addIllegalOp<AtenPreluOp>();
|
||||
target.addIllegalOp<AtenCeluOp>();
|
||||
target.addIllegalOp<AtenToDtypeLayoutOp>();
|
||||
target.addIllegalOp<AtenToDeviceOp>();
|
||||
target.addIllegalOp<AtenToPrimDeviceOp>();
|
||||
|
|
|
@ -951,6 +951,7 @@ STABLEHLO_PASS_SET = {
|
|||
"ElementwiseBitwiseRightShiftInt64Module_basic",
|
||||
"ElementwiseBitwiseRightShiftInt8Module_basic",
|
||||
"ElementwiseCeilModule_basic",
|
||||
"ElementwiseCeluStaticModule_basic",
|
||||
"ElementwiseClampMaxModule_basic",
|
||||
"ElementwiseClampMinModule_basic",
|
||||
"ElementwiseClampMinTensorFloatModule_basic",
|
||||
|
@ -1571,6 +1572,8 @@ TOSA_PASS_SET = {
|
|||
"ElementwiseBitwiseXorModule_basic",
|
||||
"ElementwiseBitwiseXorStaticShapeModule_basic",
|
||||
"ElementwiseCeilModule_basic",
|
||||
"ElementwiseCeluModule_basic",
|
||||
"ElementwiseCeluStaticModule_basic",
|
||||
"ElementwiseClampMaxModule_basic",
|
||||
"ElementwiseClampMinModule_basic",
|
||||
"ElementwiseClampModule_basic",
|
||||
|
|
|
@ -526,6 +526,9 @@ def aten〇elu〡shape(self: List[int], alpha: float = 1, scale: float = 1, inpu
|
|||
def aten〇prelu〡shape(self: List[int], weight: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇celu〡shape(self: List[int], alpha: float = 1.) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇selu〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -2652,6 +2655,11 @@ def aten〇prelu〡dtype(self_rank_dtype: Tuple[int, int], weight_rank_dtype: Tu
|
|||
assert self_dtype == weight_dtype
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, alpha=1.))
|
||||
def aten〇celu〡dtype(self_rank_dtype: Tuple[int, int], alpha: Union[int, float, complex] = 1.) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, error_types={torch.bool}))
|
||||
def aten〇relu6〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
|
|
|
@ -472,6 +472,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::floor_divide : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::softplus : (Tensor, Scalar, Scalar) -> (Tensor)")
|
||||
emit("aten::prelu : (Tensor, Tensor) -> (Tensor)")
|
||||
emit_with_mutating_variants("aten::celu : (Tensor, Scalar) -> (Tensor)")
|
||||
emit("aten::real : (Tensor) -> (Tensor)")
|
||||
emit("aten::imag : (Tensor) -> (Tensor)")
|
||||
emit("aten::view_as_complex : (Tensor) -> (Tensor)")
|
||||
|
|
|
@ -1016,6 +1016,52 @@ def ElementwisePreluStaticModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseCeluModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x):
|
||||
return torch.ops.aten.celu(x, 0.5)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseCeluModule())
|
||||
def ElementwiseCeluModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5, 3, low=-1, high=1))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseCeluStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([5, 3], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x):
|
||||
return torch.ops.aten.celu(x)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseCeluStaticModule())
|
||||
def ElementwiseCeluStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5, 3, low=-1, high=1))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseGeluModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue