mirror of https://github.com/llvm/torch-mlir
build: update llvm tag to 7ccbb4df (#1736)
Summary of changes: - LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most (although not all) places (https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c). This patch replaces the affected instances of `llvm::Optional` with `std::optional`. - In the usages of llvm::Optional that remain, llvm::Optional::value() is deprecated, so this patch replaces them with a dereference.pull/1680/head snapshot-20221220.693
parent
f6b6069a34
commit
577e38da58
|
@ -1 +1 @@
|
|||
Subproject commit 3a020527c2af10741b12e756de45bd6f774885a4
|
||||
Subproject commit 7ccbb4dff10efe6c26219204e361ddb0264938b8
|
|
@ -1 +1 @@
|
|||
Subproject commit 8df20065b22be628f2d365c387200df7d02b80c1
|
||||
Subproject commit 8c703fabd60d4447bc86f432446e9ad0eacab600
|
|
@ -17,43 +17,43 @@ namespace mlir {
|
|||
namespace tosa {
|
||||
|
||||
// Lowers ReduceAll to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceAllOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceAny to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceAnyOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceMin to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMinOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceMax to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMaxOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceProd to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceProdOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceSum to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceSumOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
||||
// Lowers ReduceMean to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMeanOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims);
|
||||
|
|
|
@ -50,8 +50,8 @@ Value getTosaConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
|
|||
// Default template creates a constant tensor in T.
|
||||
// To create INT48 TOSA constant, need to pass in llvm::APInt instead.
|
||||
template <typename T>
|
||||
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape);
|
||||
std::optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape);
|
||||
|
||||
LogicalResult tosaCastTensorToType(PatternRewriter &rewriter, Operation *op,
|
||||
Value src, Type destType, Value &result);
|
||||
|
|
|
@ -82,9 +82,8 @@ SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
|
|||
// Convert a scalar value to the target type. The scalar value can be an element
|
||||
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
|
||||
// should be converted builtin types.
|
||||
Value convertScalarToDtype(
|
||||
OpBuilder &b, Location loc, Value scalar, Type dtype,
|
||||
llvm::Optional<Type> srcOriginalDtype = std::nullopt);
|
||||
Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar, Type dtype,
|
||||
std::optional<Type> srcOriginalDtype = std::nullopt);
|
||||
|
||||
} // namespace Torch
|
||||
} // namespace torch
|
||||
|
|
|
@ -174,11 +174,11 @@ m_TorchListOfConstantInts(SmallVectorImpl<int64_t> &bind_values) {
|
|||
namespace detail {
|
||||
/// Matches the optional constant integers stored in a `torch.ListConstruct`.
|
||||
struct torch_list_of_optional_constant_ints_op_binder {
|
||||
SmallVectorImpl<Optional<int64_t>> &bind_values;
|
||||
SmallVectorImpl<std::optional<int64_t>> &bind_values;
|
||||
|
||||
/// Creates a matcher instance that binds the value to bvs if match succeeds.
|
||||
torch_list_of_optional_constant_ints_op_binder(
|
||||
SmallVectorImpl<Optional<int64_t>> &bvs)
|
||||
SmallVectorImpl<std::optional<int64_t>> &bvs)
|
||||
: bind_values(bvs) {}
|
||||
|
||||
bool match(Operation *op) {
|
||||
|
@ -203,7 +203,7 @@ struct torch_list_of_optional_constant_ints_op_binder {
|
|||
/// `torch.prim.ListConstruct`.
|
||||
inline detail::torch_list_of_optional_constant_ints_op_binder
|
||||
m_TorchListOfOptionalConstantInts(
|
||||
SmallVectorImpl<Optional<int64_t>> &bind_values) {
|
||||
SmallVectorImpl<std::optional<int64_t>> &bind_values) {
|
||||
return detail::torch_list_of_optional_constant_ints_op_binder(bind_values);
|
||||
}
|
||||
|
||||
|
|
|
@ -31,8 +31,8 @@ class ValueTensorType;
|
|||
|
||||
/// Common getter function signature that covers all tensor types.
|
||||
/// Used for sharing code between NonValueTensorType and ValueTensorType.
|
||||
using GetTensorTypeFn =
|
||||
llvm::function_ref<Type(MLIRContext *, Optional<ArrayRef<int64_t>>, Type)>;
|
||||
using GetTensorTypeFn = llvm::function_ref<Type(
|
||||
MLIRContext *, std::optional<ArrayRef<int64_t>>, Type)>;
|
||||
|
||||
/// The representation of an unknown dimension size in an ArrayRef<int64_t>.
|
||||
constexpr static int64_t kUnknownSize = -1;
|
||||
|
@ -45,7 +45,7 @@ public:
|
|||
///
|
||||
/// It is expected that for many users, `hasSizes`/`getSizes` will be a more
|
||||
/// convenient API.
|
||||
Optional<ArrayRef<int64_t>> getOptionalSizes() const;
|
||||
std::optional<ArrayRef<int64_t>> getOptionalSizes() const;
|
||||
|
||||
/// Get the raw nullable Type representing the dtype of this tensor type.
|
||||
///
|
||||
|
@ -90,7 +90,7 @@ public:
|
|||
|
||||
/// Return a type of the same kind as this one, but with given raw optional
|
||||
/// sizes and raw optional dtype.
|
||||
Type getWithSizesAndDtype(Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type getWithSizesAndDtype(std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalDtype) const;
|
||||
|
||||
/// Return a type with the same shape and dtype as this one, but with
|
||||
|
@ -127,7 +127,8 @@ namespace mlir {
|
|||
namespace torch {
|
||||
namespace Torch {
|
||||
|
||||
inline Optional<ArrayRef<int64_t>> BaseTensorType::getOptionalSizes() const {
|
||||
inline std::optional<ArrayRef<int64_t>>
|
||||
BaseTensorType::getOptionalSizes() const {
|
||||
if (auto tensor = dyn_cast<NonValueTensorType>())
|
||||
return tensor.getOptionalSizes();
|
||||
if (auto tensor = dyn_cast<ValueTensorType>())
|
||||
|
|
|
@ -47,7 +47,7 @@ def Torch_NnModuleType : Torch_Type<"NnModule", "nn.Module"> {
|
|||
// For standard ArrayRefs, which require allocation.
|
||||
class OptionalArrayRefTorchParameter<string arrayOf, string desc = ""> :
|
||||
AttrOrTypeParameter<
|
||||
"::llvm::Optional<::llvm::ArrayRef<" # arrayOf # ">>", desc> {
|
||||
"::std::optional<::llvm::ArrayRef<" # arrayOf # ">>", desc> {
|
||||
let allocator = [{
|
||||
if ($_self.has_value()) {
|
||||
$_dst.value() = $_allocator.copyInto($_self.value());
|
||||
|
|
|
@ -23,8 +23,8 @@ bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems);
|
|||
/// Returns the index indicated by `v` for a list of given `length`.
|
||||
/// If the index is negative, it is adjusted to `length` + `v`.
|
||||
/// `None` is returned the index is not an integer in the range [0,`length).
|
||||
llvm::Optional<int64_t> matchLegalConstantIndexIntoListOfSize(Value v,
|
||||
int64_t length);
|
||||
std::optional<int64_t> matchLegalConstantIndexIntoListOfSize(Value v,
|
||||
int64_t length);
|
||||
torch_upstream::ScalarType getScalarTypeForType(Type type);
|
||||
Type getTypeForScalarType(
|
||||
MLIRContext *context, torch_upstream::ScalarType dtypeInt,
|
||||
|
@ -62,7 +62,7 @@ bool isBuiltInType(Type type);
|
|||
|
||||
// Helper funtion to get rank of `Base tensor type`.
|
||||
// std::nullopt is returned if the tensorRank can't be determined.
|
||||
Optional<unsigned> getTensorRank(Value tensor);
|
||||
std::optional<unsigned> getTensorRank(Value tensor);
|
||||
|
||||
bool isViewLikeOp(Operation *op);
|
||||
|
||||
|
|
|
@ -198,7 +198,7 @@ MlirType torchMlirTorchNonValueTensorTypeGet(MlirContext context,
|
|||
intptr_t numSizes,
|
||||
const int64_t *optionalSizes,
|
||||
MlirType optionalDtype) {
|
||||
Optional<ArrayRef<int64_t>> optionalSizesArrayRef = std::nullopt;
|
||||
std::optional<ArrayRef<int64_t>> optionalSizesArrayRef = std::nullopt;
|
||||
// if numSizes == -1, then it is unranked.
|
||||
if (numSizes > -1)
|
||||
optionalSizesArrayRef = llvm::makeArrayRef(optionalSizes, numSizes);
|
||||
|
@ -232,7 +232,7 @@ MlirType torchMlirTorchValueTensorTypeGet(MlirContext context,
|
|||
intptr_t numSizes,
|
||||
const int64_t *optionalSizes,
|
||||
MlirType optionalDtype) {
|
||||
Optional<ArrayRef<int64_t>> optionalSizesArrayRef = std::nullopt;
|
||||
std::optional<ArrayRef<int64_t>> optionalSizesArrayRef = std::nullopt;
|
||||
// if numSizes == -1, then it is unranked.
|
||||
if (numSizes > -1)
|
||||
optionalSizesArrayRef = llvm::makeArrayRef(optionalSizes, numSizes);
|
||||
|
|
|
@ -393,7 +393,7 @@ public:
|
|||
// is violated for the cases of dynamic dimensions.
|
||||
SmallVector<int64_t> outputShape(resultRank, kUnknownSize);
|
||||
SmallVector<ReassociationIndices> unchangedDims;
|
||||
llvm::Optional<int64_t> inferredDimension;
|
||||
std::optional<int64_t> inferredDimension;
|
||||
for (auto en : llvm::enumerate(outputSizeTorchInt)) {
|
||||
int64_t inputDim;
|
||||
int64_t size;
|
||||
|
@ -644,8 +644,8 @@ public:
|
|||
makeShapeLLVMCompatible(inputShapeVec), resultType.getElementType());
|
||||
Value castedInput =
|
||||
rewriter.create<tensor::CastOp>(loc, adjustedInputType, input);
|
||||
llvm::Optional<Value> expandedInput;
|
||||
llvm::Optional<Value> collapsedInput;
|
||||
std::optional<Value> expandedInput;
|
||||
std::optional<Value> collapsedInput;
|
||||
|
||||
if (llvm::any_of(inputAssociations, [](ReassociationIndices indices) {
|
||||
return indices.size() > 1;
|
||||
|
|
|
@ -49,8 +49,8 @@ Value getMhloConstTensorSingleF64(PatternRewriter &rewriter, Operation *op,
|
|||
// T: storage C type.
|
||||
// Default template creates a constant tensor in T.
|
||||
template <typename T>
|
||||
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -72,9 +72,9 @@ llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
|||
|
||||
// Template specialization for APInt
|
||||
template <>
|
||||
llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<APInt> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<APInt> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -95,9 +95,9 @@ llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
|||
|
||||
// Template specialization for float
|
||||
template <>
|
||||
llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<float> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<float> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -117,9 +117,9 @@ llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
|||
}
|
||||
|
||||
template <>
|
||||
llvm::Optional<Value>
|
||||
getConstTensor<double>(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<double> vec, ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor<double>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<double> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -139,15 +139,15 @@ getConstTensor<double>(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Template instantiation
|
||||
template llvm::Optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int32_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
template std::optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int32_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
|
||||
template llvm::Optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int64_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
template std::optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int64_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
|
||||
template <typename T>
|
||||
static bool isInValidRange(bool isFloat, const double &doubleValue, bool isInt,
|
||||
|
|
|
@ -35,8 +35,8 @@ Value getMhloConstTensorSingleF64(PatternRewriter &rewriter, Operation *op,
|
|||
// Default template creates a constant tensor in T.
|
||||
// To create INT48 MHLO constant, need to pass in llvm::APInt instead.
|
||||
template <typename T>
|
||||
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape);
|
||||
std::optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape);
|
||||
|
||||
template <typename T>
|
||||
Value getSplatConstTensor(ConversionPatternRewriter &rewriter, Operation *op,
|
||||
|
|
|
@ -71,7 +71,7 @@ static Value createInitialValueForReduceOp(Operation *op, Type elementTy,
|
|||
}
|
||||
|
||||
// Util for converting AtenArgmaxOp and AtenMaxDimOp
|
||||
static llvm::Optional<ValueRange>
|
||||
static std::optional<ValueRange>
|
||||
getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
|
||||
ArrayRef<Value> inputShapeVec, int64_t dim,
|
||||
size_t dimSizeIndexBits) {
|
||||
|
|
|
@ -109,9 +109,9 @@ Value getDynamicSliceInternal(PatternRewriter &rewriter, Operation *op,
|
|||
// endIndex(default to dimSize), and step(default to 1) can be optional.
|
||||
FailureOr<Value> getDynamicSlice(PatternRewriter &rewriter, Operation *op,
|
||||
Type outTy, Value input,
|
||||
llvm::Optional<Value> startIndexOpt,
|
||||
llvm::Optional<Value> endIndexOpt,
|
||||
llvm::Optional<Value> stepOpt, int64_t dim,
|
||||
std::optional<Value> startIndexOpt,
|
||||
std::optional<Value> endIndexOpt,
|
||||
std::optional<Value> stepOpt, int64_t dim,
|
||||
size_t dimSizeIndexBits) {
|
||||
auto loc = op->getLoc();
|
||||
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
||||
|
@ -267,7 +267,7 @@ LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite(
|
|||
return rewriter.notifyMatchFailure(
|
||||
op, "only constant dim is currently supported");
|
||||
|
||||
auto getOptionalVal = [&](Value val) -> llvm::Optional<Value> {
|
||||
auto getOptionalVal = [&](Value val) -> std::optional<Value> {
|
||||
if (val.getType().isa<Torch::NoneType>()) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
|
@ -275,9 +275,9 @@ LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite(
|
|||
}
|
||||
};
|
||||
|
||||
llvm::Optional<Value> start = getOptionalVal(adaptor.getStart());
|
||||
llvm::Optional<Value> end = getOptionalVal(adaptor.getEnd());
|
||||
llvm::Optional<Value> step = getOptionalVal(adaptor.getStep());
|
||||
std::optional<Value> start = getOptionalVal(adaptor.getStart());
|
||||
std::optional<Value> end = getOptionalVal(adaptor.getEnd());
|
||||
std::optional<Value> step = getOptionalVal(adaptor.getStep());
|
||||
|
||||
FailureOr<Value> sliceInfo =
|
||||
getDynamicSlice(rewriter, op, outTy, self, start, end, step, dim,
|
||||
|
|
|
@ -279,7 +279,7 @@ public:
|
|||
// to i32 as required for the scatter op.
|
||||
// 2.) `values` is mapped to `updates` in scatter op.
|
||||
// 3.) `input` is mapped to `original` in scatter op.
|
||||
Optional<unsigned> indexTensorRank = getTensorRank(indexTensor);
|
||||
std::optional<unsigned> indexTensorRank = getTensorRank(indexTensor);
|
||||
if (!indexTensorRank || *indexTensorRank != 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "unimplemented: index tensor with rank != 1 is not supported");
|
||||
|
|
|
@ -595,10 +595,10 @@ LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
|
|||
return success();
|
||||
}
|
||||
|
||||
using ReductionConvFunc = llvm::Optional<Value> (*)(PatternRewriter &,
|
||||
Operation *,
|
||||
RankedTensorType, Value,
|
||||
ElementsAttr, bool);
|
||||
using ReductionConvFunc = std::optional<Value> (*)(PatternRewriter &,
|
||||
Operation *,
|
||||
RankedTensorType, Value,
|
||||
ElementsAttr, bool);
|
||||
|
||||
// They all constitute a common form invoking the appropriate
|
||||
// converion function in TosaLegalizeCommon.cpp
|
||||
|
@ -642,7 +642,7 @@ public:
|
|||
keepDims)))
|
||||
return failure();
|
||||
|
||||
llvm::Optional<Value> result =
|
||||
std::optional<Value> result =
|
||||
ConversionFuncT(rewriter, op, outputTy, self, reduceDimsAttr, keepDims);
|
||||
|
||||
if (!result)
|
||||
|
@ -1274,7 +1274,7 @@ public:
|
|||
auto transposedLhsType = RankedTensorType::get(
|
||||
makeShapeLLVMCompatible(transposedLhsShape), rhsElemTy);
|
||||
|
||||
llvm::Optional<Value> transposedLhsDimsConst =
|
||||
std::optional<Value> transposedLhsDimsConst =
|
||||
tosa::getConstTensor<int32_t>(
|
||||
rewriter, op,
|
||||
/*vec=*/transposedLhsDims,
|
||||
|
@ -1354,7 +1354,7 @@ public:
|
|||
auto transposedRhsValue = rankBroadcastedRhs;
|
||||
|
||||
if (rhsNeedsTranspose) {
|
||||
llvm::Optional<Value> transposedRhsDimsConst =
|
||||
std::optional<Value> transposedRhsDimsConst =
|
||||
tosa::getConstTensor<int32_t>(
|
||||
rewriter, op,
|
||||
/*vec=*/transposedRhsDims,
|
||||
|
@ -1510,7 +1510,7 @@ public:
|
|||
|
||||
if (opNeedsTranspose) {
|
||||
|
||||
llvm::Optional<Value> transposedOpShapeConst =
|
||||
std::optional<Value> transposedOpShapeConst =
|
||||
tosa::getConstTensor<int32_t>(
|
||||
rewriter, op,
|
||||
/*vec=*/transposedOpDims,
|
||||
|
@ -1699,7 +1699,7 @@ public:
|
|||
std::swap(transposedRhsShape[rhsRank - 1], transposedRhsShape[rhsRank - 2]);
|
||||
std::swap(transposedRhsDims[rhsRank - 1], transposedRhsDims[rhsRank - 2]);
|
||||
|
||||
llvm::Optional<Value> transposedRhsShapeConst =
|
||||
std::optional<Value> transposedRhsShapeConst =
|
||||
tosa::getConstTensor<int32_t>(
|
||||
rewriter, op,
|
||||
/*vec=*/transposedRhsDims,
|
||||
|
@ -1860,7 +1860,7 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
|
|||
"non-const dilation list unsupported");
|
||||
|
||||
// TOSA works in NHWC and takes OHWI weights. Perform the necessary transpose.
|
||||
llvm::Optional<Value> nchwToNhwcTransposeConst =
|
||||
std::optional<Value> nchwToNhwcTransposeConst =
|
||||
tosa::getConstTensor<int32_t>(rewriter, op,
|
||||
/*vec=*/{0, 2, 3, 1},
|
||||
/*shape=*/{static_cast<int32_t>(4)});
|
||||
|
@ -1920,7 +1920,7 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
|
|||
rewriter.getI64ArrayAttr(dilation))
|
||||
.getResult();
|
||||
|
||||
llvm::Optional<Value> nhwcToNchwTransposeConst =
|
||||
std::optional<Value> nhwcToNchwTransposeConst =
|
||||
tosa::getConstTensor<int32_t>(rewriter, op,
|
||||
/*vec=*/{0, 3, 1, 2},
|
||||
/*shape=*/{static_cast<int32_t>(4)});
|
||||
|
@ -3364,7 +3364,7 @@ public:
|
|||
auto inputShape = makeShapeTorchCompatible(inputTy.getShape());
|
||||
auto inputRank = inputTy.getRank();
|
||||
|
||||
llvm::Optional<Value> transposeDimsConst = tosa::getConstTensor<int32_t>(
|
||||
std::optional<Value> transposeDimsConst = tosa::getConstTensor<int32_t>(
|
||||
rewriter, op,
|
||||
/*vec=*/transposeDims,
|
||||
/*shape=*/{static_cast<int32_t>(inputRank)});
|
||||
|
|
|
@ -29,7 +29,7 @@ namespace tosa {
|
|||
|
||||
// Common function for lowering reduce operations to TOSA ops.
|
||||
template <typename T>
|
||||
llvm::Optional<Value> convertReduceOpCommon(
|
||||
std::optional<Value> convertReduceOpCommon(
|
||||
PatternRewriter &rewriter, Operation *op, RankedTensorType output_type,
|
||||
Value input_value, ElementsAttr axes_elems, bool keep_dims,
|
||||
Type reduce_element_type, bool is_quantized, double input_scale,
|
||||
|
@ -94,7 +94,7 @@ llvm::Optional<Value> convertReduceOpCommon(
|
|||
}
|
||||
|
||||
// Lowers ReduceAll to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceAllOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -109,7 +109,7 @@ convertReduceAllOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceAny to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceAnyOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -124,7 +124,7 @@ convertReduceAnyOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceMin to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMinOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -139,7 +139,7 @@ convertReduceMinOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceMax to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMaxOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -154,7 +154,7 @@ convertReduceMaxOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceProd to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceProdOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -180,7 +180,7 @@ convertReduceProdOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceSum to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceSumOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
@ -231,7 +231,7 @@ convertReduceSumOp(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Lowers ReduceMean to a sequence of TOSA ops.
|
||||
llvm::Optional<Value>
|
||||
std::optional<Value>
|
||||
convertReduceMeanOp(PatternRewriter &rewriter, Operation *op,
|
||||
RankedTensorType output_type, Value input_value,
|
||||
ElementsAttr axes_elems, bool keep_dims) {
|
||||
|
|
|
@ -153,8 +153,8 @@ Value getTosaConstTensorSingleF32(PatternRewriter &rewriter, Operation *op,
|
|||
// T: storage C type.
|
||||
// Default template creates a constant tensor in T.
|
||||
template <typename T>
|
||||
llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
||||
ArrayRef<T> vec, ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -176,9 +176,9 @@ llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
|||
|
||||
// Template specialization for APInt
|
||||
template <>
|
||||
llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<APInt> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<APInt> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -200,9 +200,9 @@ llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
|||
|
||||
// Template specialization for float
|
||||
template <>
|
||||
llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<float> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
std::optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
||||
Operation *op, ArrayRef<float> vec,
|
||||
ArrayRef<int64_t> shape) {
|
||||
uint64_t num_total_elements = 1;
|
||||
for (int64_t a : shape) {
|
||||
num_total_elements *= a;
|
||||
|
@ -254,7 +254,7 @@ LogicalResult tosaCastTensorToType(PatternRewriter &rewriter, Operation *op,
|
|||
for (int64_t a : srcShape)
|
||||
num_total_elements *= a;
|
||||
|
||||
llvm::Optional<Value> constOp;
|
||||
std::optional<Value> constOp;
|
||||
if (srcElemTy.isInteger(64)) {
|
||||
SmallVector<int64_t> values(num_total_elements, 0);
|
||||
constOp =
|
||||
|
@ -283,14 +283,14 @@ LogicalResult tosaCastTensorToType(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// Template instantiation
|
||||
template llvm::Optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int32_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
template std::optional<Value> getConstTensor<int32_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int32_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
|
||||
template llvm::Optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int64_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
template std::optional<Value> getConstTensor<int64_t>(PatternRewriter &,
|
||||
Operation *,
|
||||
ArrayRef<int64_t> vec,
|
||||
ArrayRef<int64_t> shape);
|
||||
} // namespace tosa
|
||||
} // namespace mlir
|
||||
|
|
|
@ -241,7 +241,7 @@ SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
|
|||
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
|
||||
// should be converted builtin types.
|
||||
Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar, Type dtype,
|
||||
llvm::Optional<Type> srcOriginalDtype) {
|
||||
std::optional<Type> srcOriginalDtype) {
|
||||
Type scalarType = scalar.getType();
|
||||
if (scalarType == dtype)
|
||||
return scalar;
|
||||
|
|
|
@ -136,7 +136,7 @@ static Value getScalarValue(Value input, Location loc,
|
|||
}
|
||||
Value scalar = nullptr;
|
||||
if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
|
||||
Optional<unsigned> tensorRank =
|
||||
std::optional<unsigned> tensorRank =
|
||||
getTensorRank(valueTensorLiteralOp.getResult());
|
||||
if (valueTensorLiteralOp && tensorRank && *tensorRank == 0) {
|
||||
auto tensorType =
|
||||
|
@ -296,13 +296,13 @@ LogicalResult ClassTypeOp::verify() {
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
OperandRange
|
||||
PrimLoopOp::getSuccessorEntryOperands(Optional<unsigned int> index) {
|
||||
PrimLoopOp::getSuccessorEntryOperands(std::optional<unsigned int> index) {
|
||||
assert(index.has_value() && index.value() == 0);
|
||||
return getIterArgsInit();
|
||||
}
|
||||
|
||||
void PrimLoopOp::getSuccessorRegions(
|
||||
Optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
SmallVectorImpl<RegionSuccessor> ®ions) {
|
||||
(void)operands;
|
||||
|
||||
|
@ -324,8 +324,8 @@ bool PrimLoopOp::isForLike() {
|
|||
// PrimLoopConditionOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
MutableOperandRange
|
||||
PrimLoopConditionOp::getMutableSuccessorOperands(Optional<unsigned> index) {
|
||||
MutableOperandRange PrimLoopConditionOp::getMutableSuccessorOperands(
|
||||
std::optional<unsigned> index) {
|
||||
// Pass all operands except the condition to the successor which is the
|
||||
// parent loop op.
|
||||
return getIterArgsMutable();
|
||||
|
@ -374,7 +374,7 @@ void PrimIfOp::print(OpAsmPrinter &p) {
|
|||
p.printOptionalAttrDict((*this)->getAttrs());
|
||||
}
|
||||
|
||||
void PrimIfOp::getSuccessorRegions(Optional<unsigned> index,
|
||||
void PrimIfOp::getSuccessorRegions(std::optional<unsigned> index,
|
||||
ArrayRef<Attribute> operands,
|
||||
SmallVectorImpl<RegionSuccessor> ®ions) {
|
||||
// The `then` and the `else` region branch back to the parent operation.
|
||||
|
@ -1022,9 +1022,9 @@ void AtenDivTensorModeOp::getCanonicalizationPatterns(
|
|||
// dimension size or returns failure if such a type was not found. If `dim` is
|
||||
// `None`, then all dimension's sizes must be known.
|
||||
static FailureOr<BaseTensorType>
|
||||
traceKnownSizeTensorType(Value value, llvm::Optional<int64_t> dim) {
|
||||
traceKnownSizeTensorType(Value value, std::optional<int64_t> dim) {
|
||||
// Function to check if we found a type that contains the queried information.
|
||||
auto foundType = [](BaseTensorType tensorType, llvm::Optional<int64_t>(dim)) {
|
||||
auto foundType = [](BaseTensorType tensorType, std::optional<int64_t>(dim)) {
|
||||
if (!tensorType.hasSizes())
|
||||
return false;
|
||||
|
||||
|
@ -1386,7 +1386,7 @@ void AtenSortIntOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
LogicalResult NonValueTensorLiteralOp::inferReturnTypes(
|
||||
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
||||
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
||||
DictionaryAttr attributes, RegionRange regions,
|
||||
SmallVectorImpl<Type> &inferredReturnTypes) {
|
||||
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
|
||||
|
@ -1426,7 +1426,7 @@ bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred,
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
LogicalResult ValueTensorLiteralOp::inferReturnTypes(
|
||||
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
||||
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
||||
DictionaryAttr attributes, RegionRange regions,
|
||||
SmallVectorImpl<Type> &inferredReturnTypes) {
|
||||
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
|
||||
|
@ -1500,7 +1500,7 @@ LogicalResult CopyToNonValueTensorOp::verify() {
|
|||
}
|
||||
|
||||
LogicalResult CopyToNonValueTensorOp::inferReturnTypes(
|
||||
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
||||
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
||||
DictionaryAttr attributes, RegionRange regions,
|
||||
SmallVectorImpl<Type> &inferredReturnTypes) {
|
||||
auto resultType = operands[0].getType().cast<ValueTensorType>();
|
||||
|
@ -1527,7 +1527,7 @@ LogicalResult CopyToValueTensorOp::verify() {
|
|||
}
|
||||
|
||||
LogicalResult CopyToValueTensorOp::inferReturnTypes(
|
||||
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
||||
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
||||
DictionaryAttr attributes, RegionRange regions,
|
||||
SmallVectorImpl<Type> &inferredReturnTypes) {
|
||||
auto resultType = operands[0].getType().cast<NonValueTensorType>();
|
||||
|
@ -1714,7 +1714,7 @@ void Aten__Getitem__TOp::getCanonicalizationPatterns(
|
|||
return failure();
|
||||
|
||||
// Get the index, but be careful because it might be statically invalid.
|
||||
llvm::Optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
||||
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
||||
op.getOperand(1), listConstruct.getNumOperands());
|
||||
if (!indexOpt)
|
||||
return rewriter.notifyMatchFailure(op, "statically invalid index");
|
||||
|
@ -2326,7 +2326,7 @@ OpFoldResult PrimMinSelfIntOp::fold(ArrayRef<Attribute> operands) {
|
|||
|
||||
template <typename CalculateOp>
|
||||
static void
|
||||
getSuccessorRegionsForCalculateOp(CalculateOp op, Optional<unsigned> index,
|
||||
getSuccessorRegionsForCalculateOp(CalculateOp op, std::optional<unsigned> index,
|
||||
ArrayRef<Attribute> operands,
|
||||
SmallVectorImpl<RegionSuccessor> ®ions) {
|
||||
if (!index.has_value()) {
|
||||
|
@ -2345,7 +2345,7 @@ getSuccessorRegionsForCalculateOp(CalculateOp op, Optional<unsigned> index,
|
|||
}
|
||||
|
||||
void ShapeCalculateOp::getSuccessorRegions(
|
||||
Optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
SmallVectorImpl<RegionSuccessor> ®ions) {
|
||||
getSuccessorRegionsForCalculateOp(*this, index, operands, regions);
|
||||
}
|
||||
|
@ -2355,7 +2355,7 @@ void ShapeCalculateOp::getSuccessorRegions(
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void DtypeCalculateOp::getSuccessorRegions(
|
||||
Optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
||||
SmallVectorImpl<RegionSuccessor> ®ions) {
|
||||
getSuccessorRegionsForCalculateOp(*this, index, operands, regions);
|
||||
}
|
||||
|
@ -2365,7 +2365,7 @@ void DtypeCalculateOp::getSuccessorRegions(
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
MutableOperandRange ShapeCalculateYieldShapesOp::getMutableSuccessorOperands(
|
||||
Optional<unsigned> index) {
|
||||
std::optional<unsigned> index) {
|
||||
// The shape operands don't get forwarded to the body.
|
||||
// MutableOperandRange always has an owning operation, even if empty, so
|
||||
// create a 0-length range.
|
||||
|
@ -2384,7 +2384,7 @@ LogicalResult ShapeCalculateYieldShapesOp::verify() {
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
MutableOperandRange DtypeCalculateYieldDtypesOp::getMutableSuccessorOperands(
|
||||
Optional<unsigned> index) {
|
||||
std::optional<unsigned> index) {
|
||||
// The dtype operands don't get forwarded to the body.
|
||||
// MutableOperandRange always has an owning operation, even if empty, so
|
||||
// create a 0-length range.
|
||||
|
|
|
@ -86,7 +86,7 @@ bool Torch::isValidSubtype(Type subtype, Type type) {
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Parse the `<T1, T2, T3>` of a type such as `!torch.tuple<T1, T2, T3>`.
|
||||
static Optional<SmallVector<Type>>
|
||||
static std::optional<SmallVector<Type>>
|
||||
parseMultipleContainedTypes(AsmParser &parser) {
|
||||
if (parser.parseLess())
|
||||
return std::nullopt;
|
||||
|
@ -185,7 +185,7 @@ Type BaseTensorType::getWithSizesAndDtypeFrom(BaseTensorType other) const {
|
|||
}
|
||||
|
||||
Type BaseTensorType::getWithSizesAndDtype(
|
||||
Optional<ArrayRef<int64_t>> optionalSizes, Type optionalDtype) const {
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes, Type optionalDtype) const {
|
||||
if (isa<NonValueTensorType>())
|
||||
return NonValueTensorType::get(getContext(), optionalSizes, optionalDtype);
|
||||
if (isa<ValueTensorType>())
|
||||
|
@ -203,7 +203,7 @@ ValueTensorType BaseTensorType::getWithValueSemantics() const {
|
|||
|
||||
static LogicalResult
|
||||
verifyTensorType(function_ref<InFlightDiagnostic()> emitError,
|
||||
Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalDtype) {
|
||||
if (optionalDtype && !isValidTorchDtype(optionalDtype)) {
|
||||
emitError() << "invalid dtype " << optionalDtype
|
||||
|
@ -274,7 +274,7 @@ Type parseTensorType(MLIRContext *context, AsmParser &parser,
|
|||
}
|
||||
if (parser.parseGreater())
|
||||
return Type();
|
||||
Optional<ArrayRef<int64_t>> optionalSizes;
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes;
|
||||
if (hasSizes)
|
||||
optionalSizes.emplace(sizes);
|
||||
|
||||
|
@ -286,7 +286,7 @@ Type parseTensorType(MLIRContext *context, AsmParser &parser,
|
|||
}
|
||||
|
||||
static void printTensorType(AsmPrinter &printer,
|
||||
Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalDtype) {
|
||||
if (!optionalSizes && !optionalDtype)
|
||||
return;
|
||||
|
@ -331,7 +331,7 @@ NonValueTensorType::getWithLeastStaticInformation(MLIRContext *context) {
|
|||
|
||||
LogicalResult
|
||||
NonValueTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
|
||||
Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalDtype) {
|
||||
return verifyTensorType(emitError, optionalSizes, optionalDtype);
|
||||
}
|
||||
|
@ -340,7 +340,7 @@ Type NonValueTensorType::parse(AsmParser &parser) {
|
|||
MLIRContext *context = parser.getContext();
|
||||
return parseTensorType(
|
||||
context, parser,
|
||||
[](MLIRContext *context, Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
[](MLIRContext *context, std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalType) {
|
||||
return NonValueTensorType::get(context, optionalSizes, optionalType);
|
||||
});
|
||||
|
@ -392,7 +392,7 @@ TensorType ValueTensorType::toBuiltinTensor() const {
|
|||
|
||||
LogicalResult
|
||||
ValueTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
|
||||
Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalDtype) {
|
||||
return verifyTensorType(emitError, optionalSizes, optionalDtype);
|
||||
}
|
||||
|
@ -401,7 +401,7 @@ Type ValueTensorType::parse(AsmParser &parser) {
|
|||
MLIRContext *context = parser.getContext();
|
||||
return parseTensorType(
|
||||
context, parser,
|
||||
[](MLIRContext *context, Optional<ArrayRef<int64_t>> optionalSizes,
|
||||
[](MLIRContext *context, std::optional<ArrayRef<int64_t>> optionalSizes,
|
||||
Type optionalType) {
|
||||
return ValueTensorType::get(context, optionalSizes, optionalType);
|
||||
});
|
||||
|
|
|
@ -69,7 +69,7 @@ static Type computeReductionType(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
Type resultType = tensorType.getWithSizesAndDtype(
|
||||
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
|
||||
sizes.size() == 0 ? std::optional<ArrayRef<int64_t>>()
|
||||
: llvm::makeArrayRef(sizes),
|
||||
tensorType.getDtype());
|
||||
return resultType;
|
||||
|
@ -105,7 +105,7 @@ static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc,
|
|||
BaseTensorType indexType =
|
||||
valueType
|
||||
.getWithSizesAndDtype(
|
||||
!valueType.hasSizes() ? Optional<ArrayRef<int64_t>>()
|
||||
!valueType.hasSizes() ? std::optional<ArrayRef<int64_t>>()
|
||||
: llvm::makeArrayRef(valueType.getSizes()),
|
||||
IntegerType::get(op->getContext(), 64, IntegerType::Signed))
|
||||
.cast<BaseTensorType>();
|
||||
|
@ -228,7 +228,7 @@ public:
|
|||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
MLIRContext *context = op.getContext();
|
||||
Optional<unsigned> maybeRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeRank = getTensorRank(self);
|
||||
if (!maybeRank)
|
||||
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
||||
unsigned rank = *maybeRank;
|
||||
|
@ -548,7 +548,7 @@ public:
|
|||
|
||||
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
||||
BaseTensorType indicesTensorType = result.getType().cast<BaseTensorType>();
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
if (!maybeInputRank) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected input tensor to have a rank");
|
||||
|
@ -681,8 +681,8 @@ public:
|
|||
Value lhs = op.getSelf();
|
||||
Value rhs = op.getOther();
|
||||
|
||||
Optional<unsigned> maybeLhsRank = getTensorRank(lhs);
|
||||
Optional<unsigned> maybeRhsRank = getTensorRank(rhs);
|
||||
std::optional<unsigned> maybeLhsRank = getTensorRank(lhs);
|
||||
std::optional<unsigned> maybeRhsRank = getTensorRank(rhs);
|
||||
if (!maybeLhsRank || !maybeRhsRank) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected input tensors to have a rank");
|
||||
|
@ -786,7 +786,7 @@ public:
|
|||
LogicalResult matchAndRewrite(AtenTOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Value lhs = op.getSelf();
|
||||
Optional<unsigned> lhsRank = getTensorRank(lhs);
|
||||
std::optional<unsigned> lhsRank = getTensorRank(lhs);
|
||||
auto loc = op.getLoc();
|
||||
|
||||
if (!lhsRank) {
|
||||
|
@ -861,7 +861,7 @@ public:
|
|||
loc, listType, llvm::ArrayRef<Value>{slice0, slice1});
|
||||
return rewriter.create<AtenCatOp>(loc, self.getType(), slices, dim);
|
||||
};
|
||||
Optional<unsigned> maybeRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeRank = getTensorRank(self);
|
||||
if (!maybeRank)
|
||||
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
||||
unsigned rank = *maybeRank;
|
||||
|
@ -917,7 +917,7 @@ public:
|
|||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
MLIRContext *context = op.getContext();
|
||||
Optional<unsigned> maybeRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeRank = getTensorRank(self);
|
||||
if (!maybeRank)
|
||||
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
||||
unsigned rank = *maybeRank;
|
||||
|
@ -1020,7 +1020,7 @@ public:
|
|||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
MLIRContext *context = op.getContext();
|
||||
Optional<unsigned> maybeRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeRank = getTensorRank(self);
|
||||
if (!maybeRank)
|
||||
return rewriter.notifyMatchFailure(op, "unimplemented: unranked tensor");
|
||||
unsigned rank = *maybeRank;
|
||||
|
@ -1258,7 +1258,7 @@ public:
|
|||
Location loc = op.getLoc();
|
||||
MLIRContext *context = op.getContext();
|
||||
Value gradOutput = op.getGradOutput();
|
||||
Optional<unsigned> maybeGradRank = getTensorRank(gradOutput);
|
||||
std::optional<unsigned> maybeGradRank = getTensorRank(gradOutput);
|
||||
if (!maybeGradRank) {
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"expected grad output to have a rank");
|
||||
|
@ -1410,8 +1410,8 @@ public:
|
|||
Value input = op.getSelf();
|
||||
Value mat1 = op.getMat1();
|
||||
Value mat2 = op.getMat2();
|
||||
Optional<unsigned> mat1Rank = getTensorRank(mat1);
|
||||
Optional<unsigned> mat2Rank = getTensorRank(mat2);
|
||||
std::optional<unsigned> mat1Rank = getTensorRank(mat1);
|
||||
std::optional<unsigned> mat2Rank = getTensorRank(mat2);
|
||||
|
||||
// The operands `mat1`, `mat2` to aten.addmm must be of rank 2.
|
||||
if (!mat1Rank || !mat2Rank || *mat1Rank != 2 || *mat2Rank != 2) {
|
||||
|
@ -1472,7 +1472,7 @@ public:
|
|||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value input = op.getSelf();
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
if (!maybeInputRank) {
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
|
||||
}
|
||||
|
@ -1602,7 +1602,7 @@ public:
|
|||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
if (!maybeInputRank) {
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
|
||||
}
|
||||
|
@ -2163,7 +2163,7 @@ class DecomposeAtenNativeBatchNormOp
|
|||
|
||||
// Rank of the input tensor must be greater than or equal to 2. The shape of
|
||||
// the `input` is supposed to be (N, C, D?, H?, W?).
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(input);
|
||||
if (!maybeInputRank || *maybeInputRank < 2)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "input must have rank greater than or equal to 2");
|
||||
|
@ -2177,8 +2177,8 @@ class DecomposeAtenNativeBatchNormOp
|
|||
op, "running stats must not be None in inference mode");
|
||||
|
||||
// Rank of `runningMean` and `runningVar` must be exactly 1.
|
||||
Optional<unsigned> runningMeanRank = getTensorRank(runningMean);
|
||||
Optional<unsigned> runningVarRank = getTensorRank(runningVar);
|
||||
std::optional<unsigned> runningMeanRank = getTensorRank(runningMean);
|
||||
std::optional<unsigned> runningVarRank = getTensorRank(runningVar);
|
||||
if (!runningMeanRank || !runningVarRank || *runningMeanRank != 1 ||
|
||||
*runningVarRank != 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
|
@ -2229,7 +2229,7 @@ class DecomposeAtenNativeBatchNormOp
|
|||
Value batchNormOutput = normalizedInput;
|
||||
if (!weight.getType().isa<Torch::NoneType>()) {
|
||||
// Rank of `weight` must be exactly 1.
|
||||
Optional<unsigned> weightRank = getTensorRank(weight);
|
||||
std::optional<unsigned> weightRank = getTensorRank(weight);
|
||||
if (!weightRank || *weightRank != 1)
|
||||
return rewriter.notifyMatchFailure(op, "expected weight to be rank 1");
|
||||
weight = rewriter.create<AtenViewOp>(loc, reshapeType, weight,
|
||||
|
@ -2239,7 +2239,7 @@ class DecomposeAtenNativeBatchNormOp
|
|||
}
|
||||
if (!bias.getType().isa<Torch::NoneType>()) {
|
||||
// Rank of `bias` must be exactly 1.
|
||||
Optional<unsigned> biasRank = getTensorRank(bias);
|
||||
std::optional<unsigned> biasRank = getTensorRank(bias);
|
||||
if (!biasRank || *biasRank != 1)
|
||||
return rewriter.notifyMatchFailure(op, "expected bias to be rank 1");
|
||||
bias = rewriter.create<AtenViewOp>(loc, reshapeType, bias,
|
||||
|
@ -2659,7 +2659,7 @@ class DecomposeAtenAdaptiveAvgPool2dOp
|
|||
MLIRContext *context = op.getContext();
|
||||
|
||||
Value input = op.getSelf();
|
||||
Optional<unsigned> maybeRank = getTensorRank(input);
|
||||
std::optional<unsigned> maybeRank = getTensorRank(input);
|
||||
if (!maybeRank) {
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
|
||||
}
|
||||
|
@ -2832,7 +2832,7 @@ class DecomposeAtenNumpyTOp : public OpRewritePattern<AtenNumpyTOp> {
|
|||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
if (!maybeInputRank) {
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
|
||||
}
|
||||
|
@ -2879,7 +2879,7 @@ static LogicalResult calculateVariance(OpTy op, PatternRewriter &rewriter,
|
|||
inputTensorTy = self.getType().cast<BaseTensorType>();
|
||||
}
|
||||
|
||||
Optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
std::optional<unsigned> maybeInputRank = getTensorRank(self);
|
||||
if (!maybeInputRank) {
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have a rank");
|
||||
}
|
||||
|
@ -3368,7 +3368,8 @@ private:
|
|||
template <typename DecomposePattern>
|
||||
void addPatternIfTargetOpIsIllegal(RewritePatternSet &patterns) {
|
||||
MLIRContext *context = &getContext();
|
||||
Optional<OperationName> opName = DecomposePattern(context).getRootKind();
|
||||
std::optional<OperationName> opName =
|
||||
DecomposePattern(context).getRootKind();
|
||||
// Because the `DecomposeComplexOpsPass` uses a greedy algorithm
|
||||
// to apply patterns, only patterns that we for sure know we want to run
|
||||
// must be added. This restricts the set of patterns allowed in this file to
|
||||
|
|
|
@ -81,8 +81,8 @@ public:
|
|||
assert(it != slotLinkageInfo.end());
|
||||
return it->second;
|
||||
}
|
||||
Optional<LinkageInfo> getFuncLinkageInfo(NnModuleOp instance,
|
||||
func::FuncOp methodFunc) {
|
||||
std::optional<LinkageInfo> getFuncLinkageInfo(NnModuleOp instance,
|
||||
func::FuncOp methodFunc) {
|
||||
auto it = funcLinkageInfo.find({instance, methodFunc});
|
||||
if (it == funcLinkageInfo.end())
|
||||
return std::nullopt;
|
||||
|
@ -638,7 +638,7 @@ static LogicalResult globalizeObjectGraph(ModuleOp module) {
|
|||
for (auto &monomorphization : tracker.getMonomorphizations()) {
|
||||
auto newFunc = cast<func::FuncOp>(monomorphization.func->clone());
|
||||
newFuncs[monomorphization] = newFunc;
|
||||
Optional<LinkageInfo> linkageInfo = std::nullopt;
|
||||
std::optional<LinkageInfo> linkageInfo = std::nullopt;
|
||||
// If it is potentially a method, check its linkage info.
|
||||
if (monomorphization.argInstances.size() != 0 &&
|
||||
monomorphization.argInstances[0].argIndex == 0) {
|
||||
|
|
|
@ -367,8 +367,8 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenTOp>();
|
||||
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
|
||||
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
|
||||
Optional<unsigned> lhsRank = getTensorRank(op.getSelf());
|
||||
Optional<unsigned> rhsRank = getTensorRank(op.getOther());
|
||||
std::optional<unsigned> lhsRank = getTensorRank(op.getSelf());
|
||||
std::optional<unsigned> rhsRank = getTensorRank(op.getOther());
|
||||
if (!lhsRank || !rhsRank)
|
||||
return false;
|
||||
// Make aten.matmul legal if the following condition is satisfied.
|
||||
|
|
|
@ -40,7 +40,7 @@ public:
|
|||
SmallVector<Operation *> copyLikeOps;
|
||||
SmallVector<Operation *> viewLikeOps;
|
||||
SmallVector<OverwriteTensorContentsOp> overwriteTensorContentsOps;
|
||||
Optional<mlir::func::ReturnOp> returnOp;
|
||||
std::optional<mlir::func::ReturnOp> returnOp;
|
||||
};
|
||||
|
||||
// Check that graph rewriting is possible by doing an abstract
|
||||
|
|
|
@ -115,7 +115,7 @@ static torch_upstream::TypeKind getTypeKind(Type type) {
|
|||
/// Returns `std::nullopt` if the types are contradictory. Note this can only
|
||||
/// be used on the `dtype` from tensors and can't be used on other types like
|
||||
/// scalar types.
|
||||
static Optional<Type> meetElementTypes(Type lhs, Type rhs) {
|
||||
static std::optional<Type> meetElementTypes(Type lhs, Type rhs) {
|
||||
auto isNullOrBuiltIn = [](Type type) { return !type || isBuiltInType(type); };
|
||||
(void)isNullOrBuiltIn;
|
||||
assert(isNullOrBuiltIn(lhs) && "`lhs` must be a builtin type");
|
||||
|
@ -138,7 +138,7 @@ enum class OptionalKnowledge {
|
|||
|
||||
/// Returns the OptionalKnowledge that assumes information from both `lhs` and
|
||||
/// `rhs`. Returns `std::nullopt` if the knowledges are contradictory.
|
||||
static Optional<OptionalKnowledge>
|
||||
static std::optional<OptionalKnowledge>
|
||||
meetOptionalKnowledge(OptionalKnowledge lhs, OptionalKnowledge rhs) {
|
||||
if (lhs == OptionalKnowledge::unKnown)
|
||||
return rhs;
|
||||
|
@ -328,20 +328,20 @@ struct ValueKnowledge {
|
|||
// Given two pieces of static knowledge, calculate new knowledge that assumes
|
||||
// the facts from both.
|
||||
// If the two pieces of knowledge are contradictory, std::nullopt is returned.
|
||||
static Optional<ValueKnowledge> meet(const ValueKnowledge &lhs,
|
||||
const ValueKnowledge &rhs) {
|
||||
static std::optional<ValueKnowledge> meet(const ValueKnowledge &lhs,
|
||||
const ValueKnowledge &rhs) {
|
||||
if (!lhs.isInitialized)
|
||||
return lhs;
|
||||
if (!rhs.isInitialized)
|
||||
return rhs;
|
||||
|
||||
Optional<ValueKnowledge> knowledge = meetTypes(lhs, rhs);
|
||||
std::optional<ValueKnowledge> knowledge = meetTypes(lhs, rhs);
|
||||
|
||||
if (!knowledge.has_value())
|
||||
return std::nullopt;
|
||||
ValueKnowledge result = knowledge.value();
|
||||
|
||||
Optional<OptionalKnowledge> optional =
|
||||
std::optional<OptionalKnowledge> optional =
|
||||
meetOptionalKnowledge(lhs.optional, rhs.optional);
|
||||
if (!optional.has_value())
|
||||
return std::nullopt;
|
||||
|
@ -349,8 +349,8 @@ struct ValueKnowledge {
|
|||
return result;
|
||||
}
|
||||
|
||||
static Optional<ValueKnowledge> meetTypes(const ValueKnowledge &lhs,
|
||||
const ValueKnowledge &rhs) {
|
||||
static std::optional<ValueKnowledge> meetTypes(const ValueKnowledge &lhs,
|
||||
const ValueKnowledge &rhs) {
|
||||
if (!lhs.isInitialized)
|
||||
return lhs;
|
||||
if (!rhs.isInitialized)
|
||||
|
@ -449,8 +449,8 @@ private:
|
|||
void visitAtenArangeStartStepOp(AtenArangeStartStepOp op);
|
||||
void visitAtenArangeStartOp(AtenArangeStartOp op);
|
||||
void visitAtenArangeOp(AtenArangeOp op);
|
||||
void visitAtenArangeLikeOpHelper(Operation *op, llvm::Optional<Value> start,
|
||||
Value end, llvm::Optional<Value> step,
|
||||
void visitAtenArangeLikeOpHelper(Operation *op, std::optional<Value> start,
|
||||
Value end, std::optional<Value> step,
|
||||
Value dtype);
|
||||
void visitReductionAlongAllDimsOp(Operation *op, Type dtype,
|
||||
ArrayRef<const ValueState *> operands);
|
||||
|
@ -464,7 +464,7 @@ private:
|
|||
template <typename OpTy> void visitScalarToTensorConversionOp(OpTy op);
|
||||
void visitAtenTensorOp(AtenTensorOp op);
|
||||
template <typename OpTy>
|
||||
void visitConstantTensorAllocOp(OpTy op, llvm::Optional<Type> dataType);
|
||||
void visitConstantTensorAllocOp(OpTy op, std::optional<Type> dataType);
|
||||
template <typename OpTy>
|
||||
void visitConstantTensorAllocLikeOp(OpTy op,
|
||||
ArrayRef<const ValueState *> operands);
|
||||
|
@ -518,7 +518,7 @@ updateResultTypeState(Type scalarType,
|
|||
// unknown (None variant of the optional).
|
||||
static torch_upstream::ResultTypeState
|
||||
updateResultTypeState(const ValueKnowledge *tensor,
|
||||
Optional<bool> rankIsNonZero,
|
||||
std::optional<bool> rankIsNonZero,
|
||||
const torch_upstream::ResultTypeState &inState,
|
||||
bool skipRankCheck = false) {
|
||||
if (!rankIsNonZero.has_value() && !skipRankCheck)
|
||||
|
@ -566,8 +566,9 @@ static Type getPromotedResultDType(ValueKnowledge *tensor, Type scalarType) {
|
|||
return getTypeForScalarType(scalarType.getContext(), result_type(state));
|
||||
}
|
||||
|
||||
static SmallVector<Optional<bool>> getRankIsNonZeroArray(ValueRange values) {
|
||||
SmallVector<Optional<bool>> rankIsNonZero;
|
||||
static SmallVector<std::optional<bool>>
|
||||
getRankIsNonZeroArray(ValueRange values) {
|
||||
SmallVector<std::optional<bool>> rankIsNonZero;
|
||||
for (Value v : values) {
|
||||
if (auto tensorType = v.getType().dyn_cast<BaseTensorType>()) {
|
||||
if (tensorType.hasSizes()) {
|
||||
|
@ -588,13 +589,13 @@ static SmallVector<Optional<bool>> getRankIsNonZeroArray(ValueRange values) {
|
|||
// Returns most generic type Type() if the tensor dtype is unknown.
|
||||
static Type getPromotedResultType(MLIRContext *context,
|
||||
ArrayRef<const ValueKnowledge *> tensors,
|
||||
ArrayRef<Optional<bool>> rankIsNonZero,
|
||||
ArrayRef<std::optional<bool>> rankIsNonZero,
|
||||
bool skipRankCheck = false) {
|
||||
torch_upstream::ResultTypeState state = {};
|
||||
assert(tensors.size() == rankIsNonZero.size());
|
||||
for (auto t : llvm::zip(tensors, rankIsNonZero)) {
|
||||
const ValueKnowledge *tensor = std::get<0>(t);
|
||||
Optional<bool> rankIsNonZero = std::get<1>(t);
|
||||
std::optional<bool> rankIsNonZero = std::get<1>(t);
|
||||
if (!tensor->dtype)
|
||||
return Type();
|
||||
state = updateResultTypeState(tensor, rankIsNonZero, state, skipRankCheck);
|
||||
|
@ -604,7 +605,7 @@ static Type getPromotedResultType(MLIRContext *context,
|
|||
|
||||
static Type getPromotedResultTypeAssumingNonZeroRank(
|
||||
MLIRContext *context, ArrayRef<const ValueKnowledge *> tensors) {
|
||||
SmallVector<Optional<bool>> rankIsNonZero(tensors.size(), true);
|
||||
SmallVector<std::optional<bool>> rankIsNonZero(tensors.size(), true);
|
||||
return getPromotedResultType(context, tensors, rankIsNonZero,
|
||||
/*skipRankCheck=*/true);
|
||||
}
|
||||
|
@ -1232,9 +1233,9 @@ void TypeAnalysis::visitAtenEmbeddingBagOp(Operation *op) {
|
|||
|
||||
// Arange like ops returns a 1-D tensor of size ceil(end - start).
|
||||
void TypeAnalysis::visitAtenArangeLikeOpHelper(Operation *op,
|
||||
llvm::Optional<Value> start,
|
||||
std::optional<Value> start,
|
||||
Value end,
|
||||
llvm::Optional<Value> step,
|
||||
std::optional<Value> step,
|
||||
Value dtype) {
|
||||
auto knowledge =
|
||||
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
|
||||
|
@ -1343,7 +1344,7 @@ void TypeAnalysis::visitAtenTensorOp(AtenTensorOp op) {
|
|||
|
||||
template <typename OpTy>
|
||||
void TypeAnalysis::visitConstantTensorAllocOp(OpTy op,
|
||||
llvm::Optional<Type> dataType) {
|
||||
std::optional<Type> dataType) {
|
||||
auto knowledge =
|
||||
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
|
||||
if (!dataType)
|
||||
|
|
|
@ -83,7 +83,7 @@ public:
|
|||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(PromoteDtypesOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
SmallVector<Optional<int64_t>> ranks;
|
||||
SmallVector<std::optional<int64_t>> ranks;
|
||||
SmallVector<int64_t> dtypes;
|
||||
if (!matchPattern(op.getRanks(), m_TorchListOfOptionalConstantInts(ranks))) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
|
@ -107,13 +107,13 @@ public:
|
|||
|
||||
torch_upstream::ResultTypeState state{};
|
||||
for (auto ranksAndDtypes : llvm::zip(ranks, dtypes)) {
|
||||
Optional<int64_t> rank;
|
||||
std::optional<int64_t> rank;
|
||||
int64_t dtype;
|
||||
std::tie(rank, dtype) = ranksAndDtypes;
|
||||
auto scalarType = static_cast<torch_upstream::ScalarType>(dtype);
|
||||
|
||||
bool isScalarOnlyOp = llvm::all_of(
|
||||
ranks, [](Optional<int64_t> rank) { return !rank.has_value(); });
|
||||
ranks, [](std::optional<int64_t> rank) { return !rank.has_value(); });
|
||||
|
||||
if (!rank.has_value()) {
|
||||
// If `rank` does not have a value, then we are dealing with a scalar
|
||||
|
|
|
@ -174,9 +174,8 @@ public:
|
|||
if (!setItem.use_empty())
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Expected `Aten_SetItemTOp` to not have users");
|
||||
llvm::Optional<int64_t> indexOpt =
|
||||
matchLegalConstantIndexIntoListOfSize(setItem.getIdx(),
|
||||
runningList.size());
|
||||
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
||||
setItem.getIdx(), runningList.size());
|
||||
// The index might be statically out of bounds.
|
||||
if (!indexOpt)
|
||||
return rewriter.notifyMatchFailure(
|
||||
|
@ -311,7 +310,7 @@ static LogicalResult refineShapeCalculateResult(ShapeCalculateOp op,
|
|||
if (auto setItem = dyn_cast<Aten_SetItemTOp>(user)) {
|
||||
// If the index is statically known, we can clobber only a single index.
|
||||
// Otherwise, we conservatively clobber all of them.
|
||||
llvm::Optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
||||
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
||||
setItem.getIdx(), listConstruct->getNumOperands());
|
||||
if (indexOpt)
|
||||
clobberedElements.set(*indexOpt);
|
||||
|
|
|
@ -23,7 +23,7 @@ bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
|
|||
return dim >= 0 && dim < inputRank;
|
||||
}
|
||||
|
||||
llvm::Optional<int64_t>
|
||||
std::optional<int64_t>
|
||||
Torch::matchLegalConstantIndexIntoListOfSize(Value v, int64_t length) {
|
||||
int64_t dim;
|
||||
if (!matchPattern(v, m_TorchConstantInt(&dim)))
|
||||
|
@ -181,7 +181,7 @@ bool Torch::isBuiltInType(Type type) {
|
|||
return isa<BuiltinDialect>(type.getDialect());
|
||||
}
|
||||
|
||||
Optional<unsigned> Torch::getTensorRank(Value tensor) {
|
||||
std::optional<unsigned> Torch::getTensorRank(Value tensor) {
|
||||
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
|
||||
if (!tensorType.hasSizes())
|
||||
return std::nullopt;
|
||||
|
|
|
@ -45,7 +45,7 @@ LogicalResult ToBuiltinTensorOp::verify() {
|
|||
}
|
||||
|
||||
LogicalResult ToBuiltinTensorOp::inferReturnTypes(
|
||||
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
||||
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
||||
DictionaryAttr attributes, RegionRange regions,
|
||||
SmallVectorImpl<Type> &inferredReturnTypes) {
|
||||
auto resultType =
|
||||
|
|
Loading…
Reference in New Issue