[TorchToLinalg] Support lowering MaxPool3dWithIndices (#3652)

Support torch.MaxPool3dWithIndices lowering to linalg backend.
pull/3675/head
lingzhiz1998 2024-08-28 03:14:25 +08:00 committed by GitHub
parent b92e61832f
commit 5bc59ce1fa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 506 additions and 217 deletions

View File

@ -224,28 +224,41 @@ template <> struct DimensionTraits<AtenMaxPool2dOp> {
static_assert(Dim == Dim);
};
template <>
struct DimensionTraits<AtenMaxPool2dWithIndicesOp>
: DimensionTraits<AtenMaxPool2dOp> {};
template <> struct DimensionTraits<AtenMaxPool3dOp> {
static constexpr int64_t Dim = 3;
// unused const variable warning suppression:
static_assert(Dim == Dim);
};
template <>
struct DimensionTraits<AtenMaxPool3dWithIndicesOp>
: DimensionTraits<AtenMaxPool3dOp> {};
template <typename OpTy>
class ConvertAtenMaxPoolOp : public OpConversionPattern<OpTy> {
using OpConversionPattern<OpTy>::OpConversionPattern;
static const bool withIndices =
llvm::is_one_of<OpTy, AtenMaxPool2dWithIndicesOp,
AtenMaxPool3dWithIndicesOp>::value;
private:
static const int64_t Dim = DimensionTraits<OpTy>::Dim;
LogicalResult createPoolingMax3D(AtenMaxPool3dOp &op,
typename OpTy::Adaptor adaptor,
LogicalResult createPoolingMax3D(OpTy &op, typename OpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter,
SmallVectorImpl<Value> &kernelSizeIntValues,
SmallVectorImpl<int64_t> &strideInts,
SmallVectorImpl<int64_t> &paddingInts,
SmallVectorImpl<int64_t> &dilationInts,
bool ceilMode) const {
SmallVector<Value, 5> outTensorShape;
bool ceilMode,
SmallVectorImpl<Value> &outTensorShape,
Value &paddedInput, Value &poolingOp) const {
static_assert(Dim == 3, "op must be MaxPool3d or MaxPool3dWithIndices");
Value self = adaptor.getSelf();
Type elementType = cast<RankedTensorType>(self.getType()).getElementType();
TypedAttr smallestFPValueAttr = rewriter.getFloatAttr(
@ -255,8 +268,8 @@ private:
Value initValue =
rewriter.create<arith::ConstantOp>(op->getLoc(), smallestFPValueAttr);
Value paddedInput = padInputTensor(op, rewriter, self, ceilMode, 3,
strideInts, paddingInts, initValue);
paddedInput = padInputTensor(op, rewriter, self, ceilMode, 3, strideInts,
paddingInts, initValue);
auto outTensorInitialized = computeOutputTensor(
op, rewriter, self, 3, ceilMode, strideInts, paddingInts, dilationInts,
@ -309,25 +322,160 @@ private:
SmallVector<utils::IteratorType>(5, utils::IteratorType::parallel);
iteratorTypes.append(3, utils::IteratorType::reduction);
SmallVector<AffineMap> indexingMaps = {mapInput, mapKernel, mapOutput};
Value poolingOp =
poolingOp = rewriter
.create<linalg::GenericOp>(
op->getLoc(),
/* result types */ outTensorInitialized.getType(),
/* operands */ ValueRange({paddedInput, windowTensor}),
/* outputs */ outTensorInitialized,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value currentVal = args[0], accMaxValue = args[2];
Value max_result = b.create<arith::MaximumFOp>(
loc, currentVal, accMaxValue);
b.create<linalg::YieldOp>(loc, max_result);
})
.getResult(0);
return success();
}
// Returns the corresponding indices of the input tensor for the max pooling
// result tensor.
//
// For finding the indices, we follow the below method:
//
// Take maxpool2d as an example to illustrate. Let's say the input tensor is a
// 4-d tensor. The maxpool2d and indices will also be a 4-d tensor. Then:
// for i in range(N):
// for j in range(C):
// for m in range(Hout):
// for n in range(Wout):
// for p in range(kH):
// for r in range(kW):
// indexH = m * stride[0] + p * dilation[0]
// indexW = n * stride[0] + r * dilation[0]
// if paddedInput[i, j, indexH, indexW] ==
// maxPool2d[i, j, m, n]:
// indices[i, j, m, n] =
// (indexH - padding[0]) * W +
// (indexW - padding[1])
//
LogicalResult
computeMaxPoolingIndices(Value maxPool, Value paddedInput, OpTy &op,
typename OpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter,
SmallVectorImpl<Value> &outTensorShape,
SmallVectorImpl<Value> &kernelSizeIntValues,
SmallVectorImpl<int64_t> &strideInts,
SmallVectorImpl<int64_t> &paddingInts,
SmallVectorImpl<int64_t> &dilationInts, int64_t rank,
Value &indicesResult) const {
Location loc = op->getLoc();
RankedTensorType indicesRankedTensorType = cast<RankedTensorType>(
this->getTypeConverter()->convertType(op->getResult(1).getType()));
Value cstMinusOne =
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(-1));
Value indicesTensor =
createInitTensor(rewriter, loc, outTensorShape,
indicesRankedTensorType.getElementType(), cstMinusOne);
SmallVector<Value> kernelSize =
castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
SmallVector<Value> padding =
getAsConstantIndexValues(rewriter, loc, paddingInts);
SmallVector<Value> dilation =
getAsConstantIndexValues(rewriter, loc, dilationInts);
SmallVector<Value> kernelStride =
getAsConstantIndexValues(rewriter, loc, strideInts);
Value windowTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(kernelSize),
indicesRankedTensorType.getElementType());
SmallVector<AffineExpr> inputExprs, outputExprs, kernelExprs;
for (unsigned i = 0; i < rank; i++) {
inputExprs.push_back(rewriter.getAffineDimExpr(i));
outputExprs.push_back(rewriter.getAffineDimExpr(i));
}
for (unsigned i = 0; i < rank - 2; i++) {
kernelExprs.push_back(rewriter.getAffineDimExpr(i + rank));
}
// If computing indices for maxpool2d, we have six dimensions here. Each
// corresponding to N, C, Hout, Wout, kH, and kW, respectively, as described
// in the algorithm above.
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
{inputExprs, kernelExprs, outputExprs}, rewriter.getContext());
SmallVector<utils::IteratorType> iteratorTypes(
rank, utils::IteratorType::parallel);
iteratorTypes.append(rank - 2, utils::IteratorType::reduction);
// Extract pooling dimensions of input shape.
SmallVector<Value> inputSubShape;
for (unsigned i = 0; i < rank - 2; i++) {
inputSubShape.push_back(
getDimOp(rewriter, loc, adaptor.getSelf(), i + 2));
}
indicesResult =
rewriter
.create<linalg::GenericOp>(
op->getLoc(),
/* result types */ outTensorInitialized.getType(),
/* operands */ ValueRange({paddedInput, windowTensor}),
/* outputs */ outTensorInitialized,
loc, /*resultTensorTypes=*/indicesTensor.getType(),
/*inputs=*/ValueRange({maxPool, windowTensor}),
/*outputs=*/indicesTensor,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value currentVal = args[0], accMaxValue = args[2];
Value max_result =
b.create<arith::MaximumFOp>(loc, currentVal, accMaxValue);
;
b.create<linalg::YieldOp>(loc, max_result);
Value maxVal = args[0], res = args[2];
SmallVector<Value> inputDims;
inputDims.append({b.create<linalg::IndexOp>(loc, 0),
b.create<linalg::IndexOp>(loc, 1)});
for (unsigned i = 2; i < rank; i++) {
Value mainIndex = b.create<linalg::IndexOp>(loc, i);
Value subIndex =
b.create<linalg::IndexOp>(loc, i + rank - 2);
Value origin = b.create<arith::MulIOp>(loc, mainIndex,
kernelStride[i - 2]);
Value offset =
b.create<arith::MulIOp>(loc, subIndex, dilation[i - 2]);
inputDims.push_back(
b.create<arith::AddIOp>(loc, origin, offset));
}
Value input =
b.create<tensor::ExtractOp>(loc, paddedInput, inputDims);
Value pred = b.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, input, maxVal);
Value outIndex =
b.create<arith::ConstantOp>(loc, b.getIndexAttr(0));
Value curInputStride =
b.create<arith::ConstantOp>(loc, b.getIndexAttr(1));
for (unsigned i = 0; i < rank - 2; i++) {
Value minusPadding = b.create<arith::SubIOp>(
loc, inputDims[rank - 1 - i], padding[rank - 3 - i]);
Value timesStride = b.create<arith::MulIOp>(
loc, minusPadding, curInputStride);
outIndex =
b.create<arith::AddIOp>(loc, outIndex, timesStride);
curInputStride = b.create<arith::MulIOp>(
loc, curInputStride, inputSubShape[rank - 3 - i]);
}
Value result = b.create<arith::SelectOp>(
loc, pred, castIndexToInt64(b, loc, outIndex), res);
Value predInvalidIndex = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, res, cstMinusOne);
Value out = b.create<arith::SelectOp>(loc, predInvalidIndex,
result, res);
b.create<linalg::YieldOp>(loc, out);
})
.getResult(0);
Type newResultType = this->getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, poolingOp);
return success();
}
@ -377,214 +525,53 @@ public:
if (!smallestValueAttr)
return rewriter.notifyMatchFailure(op, "invalid element type");
// `maxPool` contains the result of maxpool 1d/2d/3d operation over the
// input, `paddedInput` means the padded result of input tensor.
Value maxPool, paddedInput;
Type maxPoolResultType =
typeConverter->convertType(op->getResult(0).getType());
SmallVector<Value, 5> outTensorShape;
if constexpr (Dim == 1) {
SmallVector<Value, 4> outTensorShape;
Value maxPool1d, paddedInput;
if (failed(createPoolingOp<linalg::PoolingNcwMaxOp>(
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
/*dimensionality=*/1, kernelSizeIntValues, strideInts,
paddingInts, dilationInts, smallestValueAttr, outTensorShape,
paddedInput, maxPool1d)))
paddedInput, maxPool)))
return rewriter.notifyMatchFailure(op, "unable to compute maxpool1d");
Type newResultType = this->getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, maxPool1d);
return success();
} else if constexpr (Dim == 2) {
SmallVector<Value, 4> outTensorShape;
// `maxpool2d` contains the result of maxpool2d operation over the input.
Value maxPool2d, paddedInput;
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
/*dimensionality=*/2, kernelSizeIntValues, strideInts,
paddingInts, dilationInts, smallestValueAttr, outTensorShape,
paddedInput, maxPool2d)))
paddedInput, maxPool)))
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
Type newResultType = this->getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, maxPool2d);
return success();
} else {
return createPoolingMax3D(op, adaptor, rewriter, kernelSizeIntValues,
strideInts, paddingInts, dilationInts,
ceilMode);
if (failed(createPoolingMax3D(op, adaptor, rewriter, kernelSizeIntValues,
strideInts, paddingInts, dilationInts,
ceilMode, outTensorShape, paddedInput,
maxPool)))
return rewriter.notifyMatchFailure(op, "unable to compute maxpool3d");
}
}
};
} // namespace
namespace {
// Returns the result of maxpool2d over the input tensor. And the corresponding
// indices of the input tensor for the values of the result tensor.
//
// The result of the maxpool2d operation is calculated using the helper function
// written above. For finding the indices, we follow the below method:
//
// Let's say the input tensor is a 4-d tensor. The maxpool2d and indices will
// also be a 4-d tensor. Then:
// for i in range(N):
// for j in range(C):
// for m in range(Hout):
// for n in range(Wout):
// for p in range(kH):
// for r in range(kW):
// indexH = m * stride[0] + p * dilation[0]
// indexW = n * stride[0] + r * dilation[0]
// if paddedInput[i, j, indexH, indexW] ==
// maxPool2d[i, j, m, n]:
// indices[i, j, m, n] = (indexH - padding[0]) * W +
// (indexW - padding[1])
//
class ConvertAtenMaxPool2dWithIndicesOp
: public OpConversionPattern<AtenMaxPool2dWithIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenMaxPool2dWithIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op->getLoc();
const TypeConverter *typeConverter = getTypeConverter();
Value self = adaptor.getSelf();
RankedTensorType selfType = cast<RankedTensorType>(self.getType());
Type elementType = selfType.getElementType();
RankedTensorType indicesRankedTensorType = cast<RankedTensorType>(
getTypeConverter()->convertType(op->getResult(1).getType()));
// TODO: Add support for 3D inputs.
if (selfType.getRank() == 3)
return rewriter.notifyMatchFailure(
op, "unimplemented: only support 4D input");
bool ceilMode;
SmallVector<Value, 2> kernelSizeIntValues;
SmallVector<int64_t, 2> strideInts, paddingInts, dilationInts;
if (!matchPattern(op.getDilation(),
m_TorchListOfConstantInts(dilationInts)))
return rewriter.notifyMatchFailure(op,
"only support constant int dilations");
if (failed(checkAndGetPoolingParameters<AtenMaxPool2dWithIndicesOp>(
op, rewriter, typeConverter, ceilMode, kernelSizeIntValues,
strideInts, paddingInts)))
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
// `maxpool2d` contains the result of maxpool2d operation over the input.
auto smallestFPValueAttr = rewriter.getFloatAttr(
elementType,
APFloat::getInf(cast<mlir::FloatType>(elementType).getFloatSemantics(),
/*Negative=*/true));
Value maxPool2d, paddedInput;
SmallVector<Value, 4> outTensorShape;
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
op, rewriter, self, /*supportNonFPInput=*/false, ceilMode,
/*dimensionality=*/2, kernelSizeIntValues, strideInts, paddingInts,
dilationInts, smallestFPValueAttr, outTensorShape, paddedInput,
maxPool2d)))
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
Value cstMinusOne =
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(-1));
Value indicesTensor =
createInitTensor(rewriter, loc, outTensorShape,
indicesRankedTensorType.getElementType(), cstMinusOne);
SmallVector<Value> kernelSize =
castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
SmallVector<Value> padding =
getAsConstantIndexValues(rewriter, loc, paddingInts);
SmallVector<Value> dilation =
getAsConstantIndexValues(rewriter, loc, dilationInts);
SmallVector<Value> stride =
getAsConstantIndexValues(rewriter, loc, strideInts);
Value windowTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(kernelSize),
indicesRankedTensorType.getElementType());
SmallVector<AffineExpr> inputExprs, outputExprs, kernelExprs;
for (unsigned i = 0; i < 4; i++) {
inputExprs.push_back(rewriter.getAffineDimExpr(i));
outputExprs.push_back(rewriter.getAffineDimExpr(i));
Value outMaxPool = rewriter.create<tensor::CastOp>(
op->getLoc(), maxPoolResultType, maxPool);
SmallVector<Value> outResult({outMaxPool});
if (withIndices) {
Value indicesResult;
if (failed(computeMaxPoolingIndices(
maxPool, paddedInput, op, adaptor, rewriter, outTensorShape,
kernelSizeIntValues, strideInts, paddingInts, dilationInts,
selfRank, indicesResult)))
return rewriter.notifyMatchFailure(op,
"unable to compute maxpool indices");
Type indicesResultType =
typeConverter->convertType(op->getResult(1).getType());
Value outIndices = rewriter.create<tensor::CastOp>(
op->getLoc(), indicesResultType, indicesResult);
outResult.push_back(outIndices);
}
kernelExprs.push_back(rewriter.getAffineDimExpr(4));
kernelExprs.push_back(rewriter.getAffineDimExpr(5));
rewriter.replaceOp(op, outResult);
// Here we have six dimensions, each corresponding to N, C, Hout, Wout, kH,
// and kW, respectively, as described in the algorithm above.
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
{inputExprs, kernelExprs, outputExprs}, rewriter.getContext());
SmallVector<utils::IteratorType> iteratorTypes(
4, utils::IteratorType::parallel);
iteratorTypes.push_back(utils::IteratorType::reduction);
iteratorTypes.push_back(utils::IteratorType::reduction);
// Input format is : [N, C, H, W]
Value inputShapeW = getDimOp(rewriter, loc, self, 3);
Value indicesResult =
rewriter
.create<linalg::GenericOp>(
loc, /*resultTensorTypes=*/indicesTensor.getType(),
/*inputs=*/ValueRange({maxPool2d, windowTensor}),
/*outputs=*/indicesTensor,
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value maxVal = args[0], res = args[2];
Value i = b.create<linalg::IndexOp>(loc, 0);
Value j = b.create<linalg::IndexOp>(loc, 1);
Value m = b.create<linalg::IndexOp>(loc, 2);
Value n = b.create<linalg::IndexOp>(loc, 3);
Value p = b.create<linalg::IndexOp>(loc, 4);
Value r = b.create<linalg::IndexOp>(loc, 5);
Value mTimesStride =
b.create<arith::MulIOp>(loc, m, stride[0]);
Value pTimesDilation =
b.create<arith::MulIOp>(loc, p, dilation[0]);
Value indexH = b.create<arith::AddIOp>(loc, mTimesStride,
pTimesDilation);
Value nTimesStride =
b.create<arith::MulIOp>(loc, n, stride[1]);
Value rTimesDilation =
b.create<arith::MulIOp>(loc, r, dilation[1]);
Value indexW = b.create<arith::AddIOp>(loc, nTimesStride,
rTimesDilation);
Value input = b.create<tensor::ExtractOp>(
loc, paddedInput, ValueRange{i, j, indexH, indexW});
Value pred = b.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, input, maxVal);
Value indexHMinusPadding =
b.create<arith::SubIOp>(loc, indexH, padding[0]);
Value indexWMinusPadding =
b.create<arith::SubIOp>(loc, indexW, padding[1]);
Value outIndex = b.create<arith::MulIOp>(
loc, indexHMinusPadding, inputShapeW);
outIndex = b.create<arith::AddIOp>(loc, outIndex,
indexWMinusPadding);
Value result = b.create<arith::SelectOp>(
loc, pred, castIndexToInt64(b, loc, outIndex), res);
Value predInvalidIndex = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, res, cstMinusOne);
Value out = b.create<arith::SelectOp>(loc, predInvalidIndex,
result, res);
b.create<linalg::YieldOp>(loc, out);
})
.getResult(0);
Type maxPool2dResultType =
getTypeConverter()->convertType(op->getResult(0).getType());
Type indicesResultType =
getTypeConverter()->convertType(op->getResult(1).getType());
Value outMaxpool2d =
rewriter.create<tensor::CastOp>(loc, maxPool2dResultType, maxPool2d);
Value outIndices =
rewriter.create<tensor::CastOp>(loc, indicesResultType, indicesResult);
rewriter.replaceOp(op, {outMaxpool2d, outIndices});
return success();
}
};
@ -1533,7 +1520,11 @@ void mlir::torch::torch_to_linalg::populatePoolingPatternsAndLegality(
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool3dOp>>(typeConverter, context);
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
patterns.add<ConvertAtenMaxPool2dWithIndicesOp>(typeConverter, context);
target.addIllegalOp<AtenMaxPool3dWithIndicesOp>();
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool2dWithIndicesOp>>(typeConverter,
context);
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool3dWithIndicesOp>>(typeConverter,
context);
target.addIllegalOp<AtenMaxUnpool3dOp>();
patterns.add<ConvertAtenMaxUnpool3dOp>(typeConverter, context);

View File

@ -8163,6 +8163,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" func.func @\"__torch_mlir_shape_fn.aten.max_pool2d_with_indices_backward\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.list<int>, %arg4: !torch.list<int>, %arg5: !torch.list<int>, %arg6: !torch.bool, %arg7: !torch.list<int>) -> !torch.list<int> {\n"
" return %arg1 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.max_pool3d_with_indices\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.list<int>, %arg4: !torch.list<int>, %arg5: !torch.bool) -> !torch.tuple<list<int>, list<int>> {\n"
" %0 = call @__torch__._max_pool3d(%arg0, %arg1, %arg2, %arg3, %arg4, %arg5) : (!torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool) -> !torch.list<int>\n"
" %1 = torch.prim.TupleConstruct %0, %0 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
" return %1 : !torch.tuple<list<int>, list<int>>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.max_unpool3d\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.list<int>, %arg4: !torch.list<int>) -> !torch.list<int> {\n"
" %str = torch.constant.str \"AssertionError: Input and indices must be of the same rank\"\n"
" %str_0 = torch.constant.str \"AssertionError: output_size must have 3 elements\"\n"
@ -11949,6 +11954,12 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %1 = torch.prim.TupleConstruct %0#1, %int4 : !torch.int, !torch.int -> !torch.tuple<int, int>\n"
" return %1 : !torch.tuple<int, int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.max_pool3d_with_indices\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.list<int>, %arg4: !torch.list<int>, %arg5: !torch.bool) -> !torch.tuple<int, int> {\n"
" %int4 = torch.constant.int 4\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = torch.prim.TupleConstruct %0#1, %int4 : !torch.int, !torch.int -> !torch.tuple<int, int>\n"
" return %1 : !torch.tuple<int, int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.max_unpool3d\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.list<int>, %arg3: !torch.list<int>, %arg4: !torch.list<int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"

View File

@ -448,13 +448,6 @@ FX_IMPORTER_XFAIL_SET = {
"IntFloatModule_basic",
"IntImplicitModule_basic",
"LenStrModule_basic",
"MaxPool3dCeilModeTrueModule_basic",
"MaxPool3dEmptyStrideStaticModule_basic",
"MaxPool3dLargeDatadModule_basic",
"MaxPool3dModuleRandomSimple_basic",
"MaxPool3dModule_basic",
"MaxPool3dStaticCeilModeTrueModule_basic",
"MaxPool3dStaticModule_basic",
"MulFloatModule_basic",
"NativeGroupNormBackwardModule_basic",
"NeFloatIntModule_basic",
@ -707,6 +700,16 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
"MaxPool3dModule_basic",
"MaxPool3dStaticCeilModeTrueModule_basic",
"MaxPool3dStaticModule_basic",
"MaxPool3dWithIndicesAllNegativeValuesModule_basic",
"MaxPool3dWithIndicesAllOnesModule_basic",
"MaxPool3dWithIndicesCeilModeTrueModule_basic",
"MaxPool3dWithIndicesFullSizeKernelModule_basic",
"MaxPool3dWithIndicesModule_basic",
"MaxPool3dWithIndicesNonDefaultDilationModule_basic",
"MaxPool3dWithIndicesNonDefaultPaddingModule_basic",
"MaxPool3dWithIndicesNonDefaultParamsModule_basic",
"MaxPool3dWithIndicesNonDefaultStrideModule_basic",
"MaxPool3dWithIndicesStaticModule_basic",
"MseLossMeanReductionModule_basic",
"MseLossSumReductionWithDifferentElemTypeModule_basic",
"MulFloatModule_basic",
@ -2585,6 +2588,13 @@ ONNX_XFAIL_SET = {
"MaxPool3dLargeDatadModule_basic",
"MaxPool3dModuleRandomSimple_basic",
"MaxPool3dModule_basic",
"MaxPool3dWithIndicesAllOnesModule_basic",
"MaxPool3dWithIndicesCeilModeTrueModule_basic",
"MaxPool3dWithIndicesFullSizeKernelModule_basic",
"MaxPool3dWithIndicesModule_basic",
"MaxPool3dWithIndicesNonDefaultDilationModule_basic",
"MaxPool3dWithIndicesNonDefaultParamsModule_basic",
"MaxPool3dWithIndicesNonDefaultStrideModule_basic",
"MaxUnpool3dModule_basic",
"MaxUnpool3dModulePad0_basic",
"MeanDimEmptyDimModule_basic",
@ -2914,6 +2924,8 @@ ONNX_CRASHING_SET = LINALG_CRASHING_SET | {
# Runtime crash: mismatched size for broadcast
"MaxPool2dWithIndicesAllNegativeValuesModule_basic",
"MaxPool2dWithIndicesNonDefaultPaddingModule_basic",
"MaxPool3dWithIndicesAllNegativeValuesModule_basic",
"MaxPool3dWithIndicesNonDefaultPaddingModule_basic",
"StdDimEmptyDimModule_basic",
"StdCorrectionEmptyDimModule_basic",
"VarCorrectionEmptyDimModule_basic",
@ -3372,6 +3384,16 @@ FX_IMPORTER_TOSA_XFAIL_SET = {
"MaxPool3dModule_basic",
"MaxPool3dStaticCeilModeTrueModule_basic",
"MaxPool3dStaticModule_basic",
"MaxPool3dWithIndicesAllNegativeValuesModule_basic",
"MaxPool3dWithIndicesAllOnesModule_basic",
"MaxPool3dWithIndicesCeilModeTrueModule_basic",
"MaxPool3dWithIndicesFullSizeKernelModule_basic",
"MaxPool3dWithIndicesModule_basic",
"MaxPool3dWithIndicesNonDefaultDilationModule_basic",
"MaxPool3dWithIndicesNonDefaultPaddingModule_basic",
"MaxPool3dWithIndicesNonDefaultParamsModule_basic",
"MaxPool3dWithIndicesNonDefaultStrideModule_basic",
"MaxPool3dWithIndicesStaticModule_basic",
"MeanDimDtypeModule_basic",
"MeanDimEmptyDimModule_basic",
"MeanDimNoneDimModule_basic",
@ -4244,6 +4266,16 @@ ONNX_TOSA_XFAIL_SET = {
"MaxPool3dModule_basic",
"MaxPool3dStaticCeilModeTrueModule_basic",
"MaxPool3dStaticModule_basic",
"MaxPool3dWithIndicesAllNegativeValuesModule_basic",
"MaxPool3dWithIndicesAllOnesModule_basic",
"MaxPool3dWithIndicesCeilModeTrueModule_basic",
"MaxPool3dWithIndicesFullSizeKernelModule_basic",
"MaxPool3dWithIndicesModule_basic",
"MaxPool3dWithIndicesNonDefaultDilationModule_basic",
"MaxPool3dWithIndicesNonDefaultPaddingModule_basic",
"MaxPool3dWithIndicesNonDefaultParamsModule_basic",
"MaxPool3dWithIndicesNonDefaultStrideModule_basic",
"MaxPool3dWithIndicesStaticModule_basic",
"MeanDimAllReduceKeepdimModule_basic",
"MeanDimAllReduceModule_basic",
"MeanDimDtypeModule_basic",

View File

@ -1046,6 +1046,10 @@ def atenmax_pool2d_with_indices〡shape(self: List[int], kernel_size: List[in
def atenmax_pool2d_with_indices_backward〡shape(grad_output: List[int], self: List[int], kernel_size: List[int], stride: List[int], padding: List[int], dilation: List[int], ceil_mode: bool, indices: List[int]) -> List[int]:
return self
def atenmax_pool3d_with_indices〡shape(self: List[int], kernel_size: List[int], stride: List[int] = (), padding: List[int] = (0, 0, 0,), dilation: List[int] = (1, 1, 1,), ceil_mode: bool = False) -> Tuple[List[int], List[int]]:
maxpool3d = indices = _max_pool3d(self, kernel_size, stride, padding, dilation, ceil_mode)
return maxpool3d, indices
def atenmax_unpool3d〡shape(self: List[int], indices: List[int], output_size: List[int], stride: List[int], padding: List[int]) -> List[int]:
assert (len(self) == 5 or len(self) == 4), "Input be of rank 4 or 5"
assert (len(output_size) == 3), "output_size must have 3 elements"
@ -3118,6 +3122,11 @@ def atenmax_pool2d_with_indices〡dtype(self_rank_dtype: Tuple[int, int], ker
self_rank, self_dtype = self_rank_dtype
return self_dtype, torch.int64
@check_dtype_function(_check_tensors_with_the_same_dtype(tensor_shapes=[(2, 3, 5, 7, 8)], kernel_size=[2, 2, 2]))
def atenmax_pool3d_with_indices〡dtype(self_rank_dtype: Tuple[int, int], kernel_size: List[int], stride: List[int] = (), padding: List[int] = (0, 0, 0,), dilation: List[int] = (1, 1, 1,), ceil_mode: bool = False) -> Tuple[int, int]:
self_rank, self_dtype = self_rank_dtype
return self_dtype, torch.int64
def atenmax_unpool3d〡dtype(self_rank_dtype: Tuple[int, int], indices_rank_dtype: Tuple[int, int], output_size: List[int], stride: List[int], padding: List[int]) -> int:
self_rank, self_dtype = self_rank_dtype
return self_dtype

View File

@ -956,6 +956,252 @@ def MaxPool2dWithIndicesBackwardDynamic3DModule_basic(module, tu: TestUtils):
# ==============================================================================
class MaxPool3dWithIndicesModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x,
kernel_size=[2, 2, 2],
stride=[1, 1, 1],
padding=[0, 0, 0],
dilation=[1, 1, 1],
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesModule())
def MaxPool3dWithIndicesModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 1, 8, 8, 8, low=0.5, high=1.0))
class MaxPool3dWithIndicesFullSizeKernelModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 4, 4], stride=1, padding=0, dilation=1
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesFullSizeKernelModule())
def MaxPool3dWithIndicesFullSizeKernelModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4, 4, 4, low=0.5, high=1.0))
class MaxPool3dWithIndicesNonDefaultPaddingModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 8, 4], stride=[1, 1, 1], padding=[2, 4, 2], dilation=1
)
@register_test_case(
module_factory=lambda: MaxPool3dWithIndicesNonDefaultPaddingModule()
)
def MaxPool3dWithIndicesNonDefaultPaddingModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4, 16, 16, 16, low=-1.5, high=1.0))
class MaxPool3dWithIndicesNonDefaultStrideModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 4, 4], stride=[1, 2, 1], padding=0, dilation=1
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesNonDefaultStrideModule())
def MaxPool3dWithIndicesNonDefaultStrideModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 4, 16, 80, 16, low=0.5, high=2.0))
class MaxPool3dWithIndicesNonDefaultDilationModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 4, 4], stride=[1, 1, 1], padding=0, dilation=[2, 2, 2]
)
@register_test_case(
module_factory=lambda: MaxPool3dWithIndicesNonDefaultDilationModule()
)
def MaxPool3dWithIndicesNonDefaultDilationModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 4, 16, 80, 16, low=0.5, high=2.0))
class MaxPool3dWithIndicesNonDefaultParamsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x,
kernel_size=[8, 4, 8],
stride=[2, 2, 2],
padding=[1, 2, 1],
dilation=[2, 2, 2],
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesNonDefaultParamsModule())
def MaxPool3dWithIndicesNonDefaultParamsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 4, 16, 80, 16, low=-0.5, high=4.0))
class MaxPool3dWithIndicesAllNegativeValuesModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 8, 4], stride=[1, 1, 1], padding=[2, 4, 2], dilation=1
)
@register_test_case(
module_factory=lambda: MaxPool3dWithIndicesAllNegativeValuesModule()
)
def MaxPool3dWithIndicesAllNegativeValuesModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4, 16, 16, 16, low=-4.5, high=-1.0))
class MaxPool3dWithIndicesStaticModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([2, 4, 16, 16, 16], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x, kernel_size=[4, 8, 4], stride=[1, 1, 1], padding=[2, 4, 2], dilation=1
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesStaticModule())
def MaxPool3dWithIndicesStaticModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4, 16, 16, 16, low=-4.5, high=-1.0))
class MaxPool3dWithIndicesAllOnesModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x,
kernel_size=[2, 2, 2],
stride=[1, 1, 1],
padding=[0, 0, 0],
dilation=[1, 1, 1],
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesAllOnesModule())
def MaxPool3dWithIndicesAllOnesModule_basic(module, tu: TestUtils):
module.forward(torch.ones(1, 1, 8, 8, 8))
class MaxPool3dWithIndicesCeilModeTrueModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args(
[
None,
([-1, -1, -1, -1, -1], torch.float32, True),
]
)
def forward(self, x):
return torch.ops.aten.max_pool3d_with_indices(
x,
kernel_size=[2, 2, 2],
stride=[1, 1, 1],
padding=[0, 0, 0],
dilation=[1, 1, 1],
ceil_mode=True,
)
@register_test_case(module_factory=lambda: MaxPool3dWithIndicesCeilModeTrueModule())
def MaxPool3dWithIndicesCeilModeTrueModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 1, 8, 8, 8, low=0.5, high=1.0))
# ==============================================================================
class AvgPool2dFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()