mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add E2E support for prims.convert_element_type op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>pull/1597/head snapshot-20221122.665
parent
55c7e66aa7
commit
68f568b704
|
@ -647,5 +647,6 @@ LTC_XFAIL_SET = {
|
|||
"ConvolutionBackwardModule2D_basic",
|
||||
"ConvolutionBackwardModule2DPadded_basic",
|
||||
"VarMeanCorrectionModule_basic",
|
||||
"VarMeanCorrectionNoneModule_basic"
|
||||
"VarMeanCorrectionNoneModule_basic",
|
||||
"PrimsConvertElementTypeModule_basic",
|
||||
}
|
||||
|
|
|
@ -10389,6 +10389,30 @@ def Torch_PrimAbsScalarOp : Torch_Op<"prim.abs.Scalar", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_PrimsConvertElementTypeOp : Torch_Op<"prims.convert_element_type", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `prims::convert_element_type : (Tensor, int) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$a,
|
||||
Torch_IntType:$dtype
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult PrimsConvertElementTypeOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void PrimsConvertElementTypeOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_QuantizedLinearOp : Torch_Op<"quantized.linear", [
|
||||
HasValueSemantics,
|
||||
AllowsTypeRefinement,
|
||||
|
|
|
@ -3150,6 +3150,25 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// Decompose `prims.convert_element_type` op into `aten.to.dtype` op.
|
||||
class DecomposePrimsConvertElementTypeOp
|
||||
: public OpRewritePattern<PrimsConvertElementTypeOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(PrimsConvertElementTypeOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
||||
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
|
||||
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(
|
||||
op, op.getType(), op.a(), op.dtype(), /*non_blocking=*/cstFalse,
|
||||
/*copy=*/cstFalse, /*memory_format=*/cstNone);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeComplexOpsPass
|
||||
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
||||
|
@ -3355,6 +3374,8 @@ public:
|
|||
target.addIllegalOp<AtenRandintLowOp>();
|
||||
patterns.add<DecomposeAtenVarMeanCorrectionOp>(context);
|
||||
target.addIllegalOp<AtenVarMeanCorrectionOp>();
|
||||
patterns.add<DecomposePrimsConvertElementTypeOp>(context);
|
||||
target.addIllegalOp<PrimsConvertElementTypeOp>();
|
||||
|
||||
for (std::string opName : legalOps) {
|
||||
target.addLegalOp(OperationName(opName, context));
|
||||
|
|
|
@ -1074,6 +1074,12 @@ void TypeAnalysis::visitOperation(Operation *op,
|
|||
return;
|
||||
}
|
||||
|
||||
if (auto primsConvertElementType = dyn_cast<PrimsConvertElementTypeOp>(op)) {
|
||||
visitAtenToDtypeLikeOp<PrimsConvertElementTypeOp>(primsConvertElementType,
|
||||
operands);
|
||||
return;
|
||||
}
|
||||
|
||||
if (auto toDtypeLayout = dyn_cast<AtenToDtypeLayoutOp>(op)) {
|
||||
visitAtenToDtypeLikeOp<AtenToDtypeLayoutOp>(toDtypeLayout, operands);
|
||||
return;
|
||||
|
|
|
@ -5622,6 +5622,10 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.prims.convert_element_type\"(%arg0: !torch.list<int>, %arg1: !torch.int) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.to.dtype_layout\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.bool, %arg6: !torch.bool, %arg7: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
|
|
|
@ -433,6 +433,9 @@ def aten〇rsub〇Scalar(self: List[int], other: float, alpha: float = 1) -> Lis
|
|||
def aten〇to〇dtype(self: List[int], dtype: int, non_blocking: bool = False, copy: bool = False, memory_format: Optional[int] = None) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def prims〇convert_element_type(a: List[int], dtype: int) -> List[int]:
|
||||
return upstream_shape_functions.unary(a)
|
||||
|
||||
def aten〇to〇dtype_layout(self: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, non_blocking: bool = False, copy: bool = False, memory_format: Optional[int] = None) -> List[int]:
|
||||
return self
|
||||
|
||||
|
|
|
@ -653,6 +653,12 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("prim::tolist : (...) -> (...)")
|
||||
emit("prim::abs.Scalar : (Scalar) -> (Scalar)")
|
||||
|
||||
# ==========================================================================
|
||||
# `prims::` namespace.
|
||||
# ==========================================================================
|
||||
|
||||
emit("prims::convert_element_type : (Tensor, int) -> (Tensor)")
|
||||
|
||||
# ==========================================================================
|
||||
# `quantized::` namespace.
|
||||
# ==========================================================================
|
||||
|
|
|
@ -234,3 +234,22 @@ class TypeAsSameModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: TypeAsSameModule())
|
||||
def TypeAsSameModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 5), tu.rand(3, 5))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class PrimsConvertElementTypeModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([None, ([-1, -1], torch.float32, True)])
|
||||
def forward(self, x):
|
||||
return torch.ops.prims.convert_element_type(x, dtype=torch.int64)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: PrimsConvertElementTypeModule())
|
||||
def PrimsConvertElementTypeModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 5))
|
||||
|
|
Loading…
Reference in New Issue