[torch] Add support for aten.selu (#2640)

Add `aten.selu` operation to `torch` dialect.
pull/2634/head snapshot-20231214.1052
JianzheXiao 2023-12-13 20:28:08 -08:00 committed by GitHub
parent 42392bc845
commit 6ddeb1a6ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 157 additions and 0 deletions

View File

@ -346,6 +346,51 @@ def Torch_AtenLog_Op : Torch_Op<"aten.log_", [
}];
}
def Torch_AtenSeluOp : Torch_Op<"aten.selu", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::selu : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenSeluOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 1, 1);
}
void AtenSeluOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 1, 1);
}
}];
}
def Torch_AtenSelu_Op : Torch_Op<"aten.selu_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::selu_ : (Tensor) -> (Tensor)`";
let arguments = (ins
Torch_NonValueTensorType:$self
);
let results = (outs
Torch_NonValueTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenSelu_Op::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 1, 1);
}
void AtenSelu_Op::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 1, 1);
}
}];
}
def Torch_AtenSigmoidOp : Torch_Op<"aten.sigmoid", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -6746,6 +6746,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.selu\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.gather\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.list<int>, %arg3: !torch.bool) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg2) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
@ -10434,6 +10438,28 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" }\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.selu\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %none = torch.constant.none\n"
" %str = torch.constant.str \"AssertionError: \"\n"
" %int11 = torch.constant.int 11\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = torch.aten.ne.int %0#1, %int11 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %1 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %2 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.is_integer_dtype(%0#1) : (!torch.int) -> !torch.bool\n"
" %3 = torch.aten.__not__ %2 : !torch.bool -> !torch.bool\n"
" torch.prim.If %3 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.remainder.Scalar\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number) -> !torch.int {\n"
" %none = torch.constant.none\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"

View File

@ -1937,6 +1937,55 @@ public:
};
} // namespace
// Selu = scale * (max(0,x) + min(0,alpha * (exp(x) 1)))
namespace {
class DecomposeAtenSeluOp : public OpRewritePattern<AtenSeluOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSeluOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.getSelf();
auto resType = op.getType().cast<BaseTensorType>();
if (!resType.hasDtype()) {
return rewriter.notifyMatchFailure(op, "result should have dtype");
}
// Define λ and α
double scale = 1.0507009873554804934193349852946;
double alpha = 1.6732632423543772848170429916717;
// Create constants for λ and α
Value scaleVal = rewriter.create<Torch::ConstantFloatOp>(loc, rewriter.getF64FloatAttr(scale));
Value alphaVal = rewriter.create<Torch::ConstantFloatOp>(loc, rewriter.getF64FloatAttr(alpha));
// Create zero tensor for comparison
Value constantZero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value zeroTensor = createRank0Tensor(rewriter, loc, resType, constantZero);
// Calculate positive and negative parts
Value constantOne =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
Value positiveOutput = rewriter.create<AtenMaximumOp>(loc, resType, zeroTensor, input);
Value minZeroX =
rewriter.create<AtenMinimumOp>(loc, resType, zeroTensor, input);
Value expInput = rewriter.create<AtenExpOp>(loc, resType, minZeroX);
Value expInputMinusOne = rewriter.create<AtenSubScalarOp>(loc, resType, expInput, constantOne, constantOne);
Value negativeOutput = rewriter.create<AtenMulScalarOp>(loc, resType, expInputMinusOne, alphaVal);
// Multiply the result by λ
Value seluOutput = rewriter.create<AtenAddTensorOp>(
loc, resType, positiveOutput, negativeOutput, constantOne);
seluOutput = rewriter.create<AtenMulScalarOp>(loc, resType, seluOutput, scaleVal);
// Replace the original operation
rewriter.replaceOp(op, seluOutput);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenTOp : public OpRewritePattern<AtenTOp> {
public:
@ -6460,6 +6509,7 @@ public:
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenEluOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenSeluOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNewEmptyStridedOp>(patterns);

View File

@ -437,6 +437,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
target.addIllegalOp<AtenRelu6Op>();
target.addIllegalOp<AtenEluOp>();
target.addIllegalOp<AtenGluOp>();
target.addIllegalOp<AtenSeluOp>();
target.addIllegalOp<AtenHardswishOp>();
target.addIllegalOp<AtenSoftplusOp>();
target.addIllegalOp<AtenSiluOp>();

View File

@ -486,6 +486,7 @@ STABLEHLO_PASS_SET = {
"ElementwiseLeakyReluModule_basic",
"ElementwiseEluModule_basic",
"ElementwiseEluNonDefaultModule_basic",
"ElementwiseSeluModule_basic",
"ElementwiseLogModule_basic",
"ElementwiseNegModule_basic",
"ElementwiseRsqrtModule_basic",
@ -1115,6 +1116,7 @@ TOSA_PASS_SET = {
"ElementwiseRemainderScalarModule_Int_basic",
"ElementwiseRemainderScalarModule_Int_basic",
"ElementwiseRsqrtModule_basic",
"ElementwiseSeluModule_basic",
"ElementwiseSigmoidModule_basic",
"ElementwiseSignModule_basic",
"ElementwiseSqrtIntModule_basic",

View File

@ -373,6 +373,9 @@ def atenelu〡shape(self: List[int], alpha: float = 1, scale: float = 1, inpu
def atenprelu〡shape(self: List[int], weight: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)
def atenselu〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)
def atengather〡shape(self: List[int], dim: int, index: List[int], sparse_grad: bool = False) -> List[int]:
return upstream_shape_functions.unary(index)
@ -3066,6 +3069,14 @@ def atenelu〡dtype(self_rank_dtype: Tuple[int, int], alpha: Union[int, float
assert not is_integer_dtype(self_dtype)
return self_dtype
@check_dtype_function(
_check_tensors_with_the_same_dtype(num_of_tensors=1, error_types={torch.bool, torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64}))
def atenselu〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype
assert self_dtype != torch.bool
assert not is_integer_dtype(self_dtype)
return self_dtype
@check_dtype_function(
_check_tensors_with_the_same_dtype(num_of_tensors=1, other=1) +
_check_tensors_with_the_same_dtype(num_of_tensors=1, other=1.0))

View File

@ -262,6 +262,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
"aten::relu6 : (Tensor) -> (Tensor)",
"aten::leaky_relu : (Tensor, Scalar) -> (Tensor)",
"aten::log : (Tensor) -> (Tensor)",
"aten::selu : (Tensor) -> (Tensor)",
"aten::sigmoid : (Tensor) -> (Tensor)",
"aten::sign : (Tensor) -> (Tensor)",
"aten::sgn : (Tensor) -> (Tensor)",

View File

@ -564,6 +564,27 @@ def ElementwiseGeluModule_basic(module, tu: TestUtils):
# ==============================================================================
class ElementwiseSeluModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.ops.aten.selu(x)
@register_test_case(module_factory=lambda: ElementwiseSeluModule())
def ElementwiseSeluModule_basic(module, tu: TestUtils):
module.forward(tu.rand(5, 3, low=-1, high=1))
# ==============================================================================
class ElementwiseSigmoidModule(torch.nn.Module):
def __init__(self):