mirror of https://github.com/llvm/torch-mlir
build: manually update PyTorch version (#2992)
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
pull/2995/head
parent
d5693b3f51
commit
6e84752c39
|
@ -2167,7 +2167,6 @@ ONNX_XFAIL_SET = {
|
|||
"ElementwiseTanIntModule_basic",
|
||||
"ElementwiseUnaryIntModule_basic",
|
||||
"ElementwiseUnsqueezeNegDimsModule_basic",
|
||||
"ElementwiseWhereScalarModule_basic",
|
||||
"EmbeddingModuleF16_basic",
|
||||
"EmbeddingModuleI32_basic",
|
||||
"EmbeddingModuleI64_basic",
|
||||
|
@ -2192,5 +2191,11 @@ ONNX_XFAIL_SET = {
|
|||
"TensorsStackPromoteDTypeModule_basic",
|
||||
}
|
||||
|
||||
if torch_version_for_comparison() < version.parse("2.3.0.dev"):
|
||||
ONNX_XFAIL_SET = ONNX_XFAIL_SET | {
|
||||
# ERROR: dtype (torch.float64) is not equal to golden dtype (torch.float32)
|
||||
"ElementwiseWhereScalarModule_basic",
|
||||
}
|
||||
|
||||
ONNX_CRASHING_SET = { }
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@ def export_and_import(
|
|||
f,
|
||||
*args,
|
||||
fx_importer: Optional[FxImporter] = None,
|
||||
constraints: Optional[torch.export.Constraint] = None,
|
||||
experimental_support_mutation: bool = False,
|
||||
hooks: Optional[FxImporterHooks] = None,
|
||||
func_name: str = "main",
|
||||
|
@ -31,7 +30,7 @@ def export_and_import(
|
|||
|
||||
if fx_importer is None:
|
||||
fx_importer = FxImporter(context=context, hooks=hooks)
|
||||
prog = torch.export.export(f, args, kwargs, constraints=constraints)
|
||||
prog = torch.export.export(f, args, kwargs)
|
||||
decomp_table = get_decomposition_table()
|
||||
prog = prog.run_decompositions(decomp_table)
|
||||
if experimental_support_mutation:
|
||||
|
|
|
@ -1 +1 @@
|
|||
8efa066dc0870521652c1319bd6b5b0f6dc3fe25
|
||||
ce013333221ff2d1285a8e8cf7c427584e65fea2
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
--pre
|
||||
torch==2.3.0.dev20240220
|
||||
torch==2.3.0.dev20240307
|
||||
|
|
|
@ -104,7 +104,7 @@ def sparse_export(
|
|||
mask = [a.layout in SPARSE_LAYOUTS for a in args]
|
||||
# Build the regular FX traced graph with only dense arguments
|
||||
# (the current version would crash otherwise, see issue above).
|
||||
prog = torch.export.export(f, dargs, kwargs, constraints=None)
|
||||
prog = torch.export.export(f, dargs, kwargs)
|
||||
# Annotate sparse arguments in the graph. Note that we currently
|
||||
# only account for sparsity defined by the user inputs to the model.
|
||||
# TODO: support sparsity in model parameters (weights, biases)
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
--pre
|
||||
torchvision==0.18.0.dev20240220
|
||||
torchvision==0.18.0.dev20240307
|
||||
|
|
Loading…
Reference in New Issue