diff --git a/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td b/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td index f83dee431..a86474551 100644 --- a/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td +++ b/include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td @@ -4976,6 +4976,29 @@ def Torch_AtenFakeQuantizePerChannelAffineCachemaskOp : Torch_Op<"aten.fake_quan }]; } +def Torch_AtenIsfiniteOp : Torch_Op<"aten.isfinite", [ + AllowsTypeRefinement, + HasValueSemantics, + ReadOnly + ]> { + let summary = "Generated op for `aten::isfinite : (Tensor) -> (Tensor)`"; + let arguments = (ins + AnyTorchTensorType:$self + ); + let results = (outs + AnyTorchOptionalTensorType:$result + ); + let hasCustomAssemblyFormat = 1; + let extraClassDefinition = [{ + ParseResult AtenIsfiniteOp::parse(OpAsmParser &parser, OperationState &result) { + return parseDefaultTorchOp(parser, result, 1, 1); + } + void AtenIsfiniteOp::print(OpAsmPrinter &printer) { + printDefaultTorchOp(printer, *this, 1, 1); + } + }]; +} + def Torch_AtenMaximumOp : Torch_Op<"aten.maximum", [ AllowsTypeRefinement, HasValueSemantics, diff --git a/lib/Conversion/TorchToStablehlo/Basic.cpp b/lib/Conversion/TorchToStablehlo/Basic.cpp index 3d01734f9..c4c3a874f 100644 --- a/lib/Conversion/TorchToStablehlo/Basic.cpp +++ b/lib/Conversion/TorchToStablehlo/Basic.cpp @@ -2075,6 +2075,30 @@ LogicalResult ConvertAtenOp::matchAndRewrite( return success(); } +template <> +LogicalResult ConvertAtenOp::matchAndRewrite( + AtenIsfiniteOp op, OpAdaptor adaptor, + ConversionPatternRewriter &rewriter) const { + Value self = adaptor.getSelf(); + auto selfTy = cast(self.getType()); + if (!selfTy) + return rewriter.notifyMatchFailure( + op, "Only Tensor types are currently supported"); + + auto outType = + dyn_cast(getTypeConverter()->convertType(op.getType())); + Type outElemTy = outType.getElementType(); + if (!outElemTy.isInteger(1)) { + return rewriter.notifyMatchFailure( + op, "Only i1 output element type is supported"); + } + + rewriter.replaceOpWithNewOp(op.getOperation(), outType, + self); + + return success(); +} + void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality( TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target, const TorchToStablehloOptions &options) { @@ -2248,6 +2272,7 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality( INSERT_ATENOP_PATTERN(AtenBitwiseRightShiftTensorOp); INSERT_ATENOP_PATTERN(AtenTrilOp); + INSERT_ATENOP_PATTERN(AtenIsfiniteOp); #undef INSERT_ATENOP_PATTERN #define INSERT_BINARY_BROADCAST_PATTERN(AtenOp, StablehloOp) \ diff --git a/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp b/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp index fd1a1a11e..624c4b48c 100644 --- a/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp +++ b/lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp @@ -6495,6 +6495,9 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() { " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list) -> !torch.list\n" " return %0 : !torch.list\n" " }\n" +" func.func @\"__torch_mlir_shape_fn.aten.isfinite\"(%arg0: !torch.list) -> !torch.list {\n" +" return %arg0 : !torch.list\n" +" }\n" " func.func @\"__torch_mlir_shape_fn.aten.cosine_similarity\"(%arg0: !torch.list, %arg1: !torch.list, %arg2: !torch.int, %arg3: !torch.float) -> !torch.list {\n" " %none = torch.constant.none\n" " %int1 = torch.constant.int 1\n" @@ -11448,6 +11451,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() { " %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n" " return %1 : !torch.int\n" " }\n" +" func.func @\"__torch_mlir_dtype_fn.aten.isfinite\"(%arg0: !torch.tuple) -> !torch.int {\n" +" %int11 = torch.constant.int 11\n" +" return %int11 : !torch.int\n" +" }\n" " func.func @\"__torch_mlir_dtype_fn.aten.rad2deg\"(%arg0: !torch.tuple) -> !torch.int {\n" " %none = torch.constant.none\n" " %str = torch.constant.str \"AssertionError: \"\n" diff --git a/projects/pt1/e2e_testing/xfail_sets.py b/projects/pt1/e2e_testing/xfail_sets.py index 5803c3c69..ce6700127 100644 --- a/projects/pt1/e2e_testing/xfail_sets.py +++ b/projects/pt1/e2e_testing/xfail_sets.py @@ -519,6 +519,7 @@ FX_IMPORTER_XFAIL_SET = { "IndexPutImpl2DNoneIndexStaticModule_basic", "IndexPutImpl3DFloatNonAccumulateModule_basic", "IndexPutImplIndexWithNoneModule_basic", + "IsInfiniteModule_basic", "InterpolateDynamicModule_sizes_nearest", "IouOfModule_basic", "MeshgridIndexingIJ_basic", diff --git a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py index e53b60cbc..0dac7b3d5 100644 --- a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py +++ b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/abstract_interp_lib_gen.py @@ -222,6 +222,9 @@ def aten〇exp2〡shape(self: List[int]) -> List[int]: def aten〇expm1〡shape(self: List[int]) -> List[int]: return upstream_shape_functions.unary(self) +def aten〇isfinite〡shape(self: List[int]) -> List[int]: + return self + def aten〇cosine_similarity〡shape(x1: List[int], x2: List[int], dim: int = 1, eps: float = 1e-08) -> List[int]: broadcast = upstream_shape_functions.broadcast(x1, x2) return broadcast[:dim] + broadcast[dim + 1:] @@ -2656,6 +2659,9 @@ def aten〇expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int: self_rank, self_dtype = self_rank_dtype return _get_dtype_of_floating_point_op(self_dtype) +def aten〇isfinite〡dtype(self_rank_dtype: Tuple[int, int]) -> int: + return torch.bool + @check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, error_types={torch.complex64, torch.complex128})) def aten〇rad2deg〡dtype(self_rank_dtype: Tuple[int, int]) -> int: self_rank, self_dtype = self_rank_dtype diff --git a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py index 8dfe89ebf..1a81a4dcd 100644 --- a/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py +++ b/projects/pt1/python/torch_mlir/jit_ir_importer/build_tools/torch_ods_gen.py @@ -484,6 +484,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry): emit( "aten::fake_quantize_per_channel_affine_cachemask : (Tensor, Tensor, Tensor, int, int, int) -> (Tensor, Tensor)" ) + emit("aten::isfinite : (Tensor) -> (Tensor)") emit("aten::maximum : (Tensor, Tensor) -> (Tensor)") emit("aten::minimum : (Tensor, Tensor) -> (Tensor)") emit("aten::fmax : (Tensor, Tensor) -> (Tensor)") diff --git a/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py b/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py index bc87cc67d..5aa22ce3b 100644 --- a/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py +++ b/projects/pt1/python/torch_mlir_e2e_test/test_suite/basic.py @@ -4373,6 +4373,29 @@ def PowIntFloatModule_basic(module, tu: TestUtils): # ============================================================================== +class IsInfiniteModule(torch.nn.Module): + def __init__(self): + super().__init__() + + @export + @annotate_args( + [ + None, + ([-1], torch.float32, True), + ] + ) + def forward(self, x): + return torch.ops.aten.isfinite(x) + + +@register_test_case(module_factory=lambda: IsInfiniteModule()) +def IsInfiniteModule_basic(module, tu: TestUtils): + module.forward(torch.tensor([-torch.inf, torch.inf, torch.nan, -2.3, 0.0, 1.5])) + + +# ============================================================================== + + class BaddbmmDynamicModule(torch.nn.Module): def __init__(self): super().__init__()