mirror of https://github.com/llvm/torch-mlir
[RefE2E] Add interesting control flow example.
This also required adding a lowering for ForOp in our tensor->memref conversion.pull/53/head
parent
bc7c852379
commit
7b7f35744b
|
@ -50,6 +50,33 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// This is a type conversion similar to CallOpSignatureConversion.
|
||||
class LowerForOpTypes : public OpConversionPattern<scf::ForOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(scf::ForOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
SmallVector<Type, 6> newResultTypes;
|
||||
for (auto type : op.getResultTypes()) {
|
||||
Type newType = typeConverter->convertType(type);
|
||||
if (!newType)
|
||||
return rewriter.notifyMatchFailure(op, "not a 1:1 type conversion");
|
||||
newResultTypes.push_back(newType);
|
||||
}
|
||||
rewriter.updateRootInPlace(op, [&] {
|
||||
for (auto t : llvm::zip(op.getResults(), newResultTypes))
|
||||
std::get<0>(t).setType(std::get<1>(t));
|
||||
auto bodyArgs = op.getBody()->getArguments();
|
||||
for (auto t : llvm::zip(llvm::drop_begin(bodyArgs, 1), newResultTypes))
|
||||
std::get<0>(t).setType(std::get<1>(t));
|
||||
});
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// This is a type conversion similar to CallOpSignatureConversion.
|
||||
class LowerSelectOpTypes : public OpConversionPattern<SelectOp> {
|
||||
|
@ -151,6 +178,7 @@ class LowerStructuralToMemref
|
|||
|
||||
patterns.insert<LowerSelectOpTypes>(typeConverter, context);
|
||||
patterns.insert<LowerIfOpTypes>(typeConverter, context);
|
||||
patterns.insert<LowerForOpTypes>(typeConverter, context);
|
||||
patterns.insert<LowerTensorToMemrefOp>(typeConverter, context);
|
||||
patterns.insert<LowerMemrefToTensorOp>(typeConverter, context);
|
||||
target.addIllegalOp<tcp::TensorToMemrefOp>();
|
||||
|
|
|
@ -42,6 +42,19 @@ func @if(%pred: i1, %true_val: tensor<?xf32>, %false_val: tensor<?xf32>) -> tens
|
|||
return %0 : tensor<?xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @for(%arg0: memref<f32>, %arg1: index, %arg2: index, %arg3: index) -> memref<f32> {
|
||||
// CHECK-NEXT: %[[RET:.*]] = scf.for %arg4 = %arg1 to %arg2 step %arg3 iter_args(%arg5 = %arg0) -> (memref<f32>) {
|
||||
// CHECK-NEXT: scf.yield %arg5 : memref<f32>
|
||||
// CHECK-NEXT: }
|
||||
// CHECK-NEXT: return %[[RET]] : memref<f32>
|
||||
// CHECK-NEXT: }
|
||||
func @for(%arg0: tensor<f32>, %lb: index, %ub: index, %step: index) -> tensor<f32> {
|
||||
%ret = scf.for %iv = %lb to %ub step %step iter_args(%iter = %arg0) -> tensor<f32> {
|
||||
scf.yield %iter : tensor<f32>
|
||||
}
|
||||
return %ret : tensor<f32>
|
||||
}
|
||||
|
||||
|
||||
// Test the interactions with materializations.
|
||||
// Note: this pass never actually expects IR with memref argument types.
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
// RUN: npcomp-run-mlir %s \
|
||||
// RUN: -invoke pow2 \
|
||||
// RUN: -arg-value="dense<8.0> : tensor<f32>" \
|
||||
// RUN: -shared-libs=%npcomp_runtime_shlib 2>&1 \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// 2^8 == 256
|
||||
// CHECK: output #0: dense<2.560000e+02> : tensor<f32>
|
||||
func @pow2(%arg0: tensor<f32>) -> tensor<f32> {
|
||||
%c0 = constant 0 : index
|
||||
%c1 = constant 1 : index
|
||||
|
||||
// Slight awkwardness: convert the tensor<f32> to an index.
|
||||
// TODO: Allow passing plain integers/floats (not tensors) at
|
||||
// calling convention boundaries.
|
||||
|
||||
%num_iters_float = extract_element %arg0[] : tensor<f32>
|
||||
%num_iters_i32 = fptosi %num_iters_float : f32 to i32
|
||||
%num_iters = index_cast %num_iters_i32 : i32 to index
|
||||
|
||||
// Repeatedly add the value to itself %num_iters times.
|
||||
%tensor_c1 = constant dense<1.0> : tensor<f32>
|
||||
%ret = scf.for %iv = %c0 to %num_iters step %c1 iter_args(%iter = %tensor_c1) -> tensor<f32> {
|
||||
%doubled = tcf.add %iter, %iter : (tensor<f32>, tensor<f32>) -> tensor<f32>
|
||||
scf.yield %doubled : tensor<f32>
|
||||
}
|
||||
return %ret : tensor<f32>
|
||||
}
|
||||
|
Loading…
Reference in New Issue