mirror of https://github.com/llvm/torch-mlir
[ONNX] Fix resize ceil numerics and add half_pixel_symmetric support (#3443)
This patch fixes several failing tests in our [external test suite](https://github.com/nod-ai/SHARK-TestSuite/tree/main/iree_tests/onnx/node/generated), and addresses some of the issues discussed in #3420pull/3454/head
parent
e07a0bfc54
commit
7cd3368b20
|
@ -2657,14 +2657,21 @@ static Value NearestInterpolate(OpBuilder &b, Location loc,
|
|||
nearestFP = b.create<arith::SelectOp>(loc, cmp, floor, ceil);
|
||||
} else if (nearestMode == "round_prefer_ceil") {
|
||||
Value cstHalf = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(0.5));
|
||||
Value cstOne = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(1));
|
||||
Value floor = b.create<math::FloorOp>(loc, proj);
|
||||
Value ceil = b.create<math::CeilOp>(loc, proj);
|
||||
Value decimal = b.create<arith::SubFOp>(loc, proj, floor);
|
||||
Value cmp = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGE,
|
||||
decimal, cstHalf);
|
||||
nearestFP = b.create<arith::SelectOp>(loc, cmp, ceil, floor);
|
||||
Value inputSizeMOne = b.create<arith::SubFOp>(loc, inputSizeFP, cstOne);
|
||||
// don't extract out of bounds
|
||||
nearestFP = b.create<arith::MinimumFOp>(loc, nearestFP, inputSizeMOne);
|
||||
} else if (nearestMode == "ceil") {
|
||||
Value cstOne = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(1));
|
||||
Value inputSizeMOne = b.create<arith::SubFOp>(loc, inputSizeFP, cstOne);
|
||||
nearestFP = b.create<math::CeilOp>(loc, proj);
|
||||
nearestFP = b.create<arith::MinimumFOp>(loc, nearestFP, inputSizeMOne);
|
||||
} else {
|
||||
llvm_unreachable("Unsupported nearest mode");
|
||||
}
|
||||
|
@ -2738,7 +2745,8 @@ static Value BilinearInterpolate(OpBuilder &b,
|
|||
if (coordStr == "_asymmetric") {
|
||||
preClip = b.create<arith::DivFOp>(loc, outFP, scale);
|
||||
}
|
||||
if (coordStr == "_pytorch_half_pixel" || coordStr == "") {
|
||||
if (coordStr == "_pytorch_half_pixel" || coordStr == "" ||
|
||||
coordStr == "_half_pixel_symmetric") {
|
||||
// half-pixel modes
|
||||
// y_resized + 0.5
|
||||
Value outPlusHalf = b.create<arith::AddFOp>(loc, outFP, cstHalf);
|
||||
|
@ -2747,6 +2755,18 @@ static Value BilinearInterpolate(OpBuilder &b,
|
|||
// _ - 0.5
|
||||
preClip = b.create<arith::SubFOp>(loc, outDivScale, cstHalf);
|
||||
}
|
||||
// for half_pixel_symmetric, need to compute offset from raw scales
|
||||
if (coordStr == "_half_pixel_symmetric" && !scaleValues.empty()) {
|
||||
Value outputSizeFromScale = b.create<arith::MulFOp>(loc, inputFP, scale);
|
||||
Value adjustment =
|
||||
b.create<arith::DivFOp>(loc, outputSizeFP, outputSizeFromScale);
|
||||
Value cstTwo = b.create<arith::ConstantOp>(loc, b.getF32FloatAttr(2.0));
|
||||
Value center = b.create<arith::DivFOp>(loc, inputFP, cstTwo);
|
||||
Value oneMAdjustment =
|
||||
b.create<arith::SubFOp>(loc, cstOneFloat, adjustment);
|
||||
Value offset = b.create<arith::MulFOp>(loc, center, oneMAdjustment);
|
||||
preClip = b.create<arith::AddFOp>(loc, offset, preClip);
|
||||
}
|
||||
// for pytorch half pixel , special case for length_resized == 1:
|
||||
if (coordStr == "_pytorch_half_pixel") {
|
||||
Value cmp = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UEQ,
|
||||
|
|
|
@ -156,7 +156,89 @@ func.func @test_resize_nearest_3d(%arg0: !torch.vtensor<[?,?,?,?,?],f32>, %arg1:
|
|||
return %7 : !torch.vtensor<[?,?,?,?,?],f32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func.func @test_resize_nearest_half_pixel
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_resize_nearest_ceil
|
||||
func.func @test_resize_nearest_ceil(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[3],si64>) -> !torch.vtensor<[?,?,?],f32> {
|
||||
// CHECK: %[[GENERIC:.*]] = linalg.generic
|
||||
// CHECK: %[[x11:.*]] = linalg.index 0 : index
|
||||
// CHECK: %[[x12:.*]] = linalg.index 1 : index
|
||||
// CHECK: %[[x13:.*]] = linalg.index 2 : index
|
||||
// CHECK: %[[x15:.*]] = arith.sitofp %[[c2_i64:.*]] : i64 to f32
|
||||
// CHECK: %[[x19:.*]] = arith.sitofp %[[x6:.*]] : i64 to f32
|
||||
// CHECK: %[[x21:.*]] = arith.divf %[[x19]], %[[x15]] : f32
|
||||
// CHECK: %[[x23:.*]] = arith.index_cast %[[x13]] : index to i64
|
||||
// CHECK: %[[x24:.*]] = arith.sitofp %[[x23]] : i64 to f32
|
||||
// CHECK: %[[cst:.*]] = arith.constant 5.000000e-01 : f32
|
||||
// CHECK: %[[add:.*]] = arith.addf %[[x24]], %[[cst]] : f32
|
||||
// CHECK: %[[x25:.*]] = arith.divf %[[add]], %[[x21]] : f32
|
||||
// CHECK: %[[sub:.*]] = arith.subf %[[x25]], %[[cst]] : f32
|
||||
// CHECK: %[[cst3:.*]] = arith.constant 1.000000e+00 : f32
|
||||
// CHECK: %[[nM1:.*]] = arith.subf %[[inputsizefp:.*]], %[[cst3]]
|
||||
// CHECK: %[[ceil:.*]] = math.ceil %[[sub]] : f32
|
||||
// CHECK: %[[minindex:.*]] = arith.minimumf %[[ceil]], %[[nM1]]
|
||||
// CHECK: %[[x31:.*]] = arith.fptosi %[[minindex]] : f32 to i64
|
||||
// CHECK: %[[x32:.*]] = arith.index_cast %[[x31]] : i64 to index
|
||||
// CHECK: %[[extracted:.*]] = tensor.extract %[[x0:.*]][%[[x11]], %[[x12]], %[[x32]]] : tensor<?x?x?xf32>
|
||||
// CHECK: linalg.yield %[[extracted]] : f32
|
||||
%none = torch.constant.none
|
||||
%none_0 = torch.constant.none
|
||||
%int0 = torch.constant.int 0
|
||||
%false = torch.constant.bool false
|
||||
%true = torch.constant.bool true
|
||||
%str = torch.constant.str "nearest_half_pixel,ceil"
|
||||
%int2 = torch.constant.int 2
|
||||
%0 = torch.aten.select.int %arg1, %int0, %int2 : !torch.vtensor<[3],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
|
||||
%1 = torch.aten.item %0 : !torch.vtensor<[1],si64> -> !torch.int
|
||||
%4 = torch.prim.ListConstruct %1 : (!torch.int) -> !torch.list<int>
|
||||
%5 = torch.aten.__interpolate.size_list_scale_list %arg0, %4, %none_0, %str, %false, %none_0, %false : !torch.vtensor<[?,?,?],f32>, !torch.list<int>, !torch.none, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?],f32>
|
||||
return %5 : !torch.vtensor<[?,?,?],f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_resize_scales_linear_half_pixel_symmetric
|
||||
func.func @test_resize_scales_linear_half_pixel_symmetric(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1: !torch.vtensor<[4]
|
||||
,f64>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
// CHECK: %[[generic:.*]] = linalg.generic
|
||||
// CHECK: %[[cst7:.*]] = arith.constant 2.0
|
||||
// CHECK: %[[halfsize:.*]] = arith.divf %[[sizefp:.*]], %[[cst7]]
|
||||
// CHECK: %[[modifier:.*]] = arith.subf %[[cstOne:.*]], %[[adjustment:.*]]
|
||||
// CHECK: %[[offset:.*]] = arith.mulf %[[halfsize]], %[[modifier]]
|
||||
// CHECK: %[[preClip:.*]] = arith.addf %[[offset]], %[[halfpixelbase:.*]]
|
||||
// CHECK: %[[extracted:.*]] = tensor.extract %[[x0:.*]][%[[x1:.*]], %[[x2:.*]], %[[x3:.*]], %[[x4:.*]]] : tensor<1x1x2x4xf32>
|
||||
// CHECK: %[[extracted_7:.*]] = tensor.extract %[[x0]][%[[x1]], %[[x2]]
|
||||
// CHECK: %[[extracted_8:.*]] = tensor.extract %[[x0]][%[[x1]], %[[x2]]
|
||||
// CHECK: %[[extracted_9:.*]] = tensor.extract %[[x0]][%[[x1]], %[[x2]]
|
||||
// CHECK: %[[dx0p00:.*]] = arith.mulf %[[dx0:.*]], %[[extracted]]
|
||||
// CHECK: %[[dx1p01:.*]] = arith.mulf %[[dx1:.*]], %[[extracted_7]]
|
||||
// CHECK: %[[sum:.*]] = arith.addf %[[dx0p00]], %[[dx1p01]]
|
||||
// CHECK: %[[left:.*]] = arith.mulf %[[dy0:.*]], %[[sum]]
|
||||
// CHECK: %[[dx0p10:.*]] = arith.mulf %[[dx0]], %[[extracted_8]]
|
||||
// CHECK: %[[dx1p11:.*]] = arith.mulf %[[dx1]], %[[extracted_9]]
|
||||
// CHECK: %[[sum2:.*]] = arith.addf %[[dx0p10]], %[[dx1p11]]
|
||||
// CHECK: %[[right:.*]] = arith.mulf %[[dy1:.*]], %[[sum2]]
|
||||
// CHECK: %[[retval:.*]] = arith.addf %[[left]], %[[right]]
|
||||
%none = torch.constant.none
|
||||
%none_0 = torch.constant.none
|
||||
%int0 = torch.constant.int 0
|
||||
%false = torch.constant.bool false
|
||||
%true = torch.constant.bool true
|
||||
%str = torch.constant.str "bilinear_half_pixel_symmetric"
|
||||
%int2 = torch.constant.int 2
|
||||
%0 = torch.aten.select.int %arg1, %int0, %int2 : !torch.vtensor<[4],f64>, !torch.int, !torch.int -> !torch.vtensor<[1],f64>
|
||||
%1 = torch.aten.item %0 : !torch.vtensor<[1],f64> -> !torch.float
|
||||
%int3 = torch.constant.int 3
|
||||
%2 = torch.aten.select.int %arg1, %int0, %int3 : !torch.vtensor<[4],f64>, !torch.int, !torch.int -> !torch.vtensor<[1],f64>
|
||||
%3 = torch.aten.item %2 : !torch.vtensor<[1],f64> -> !torch.float
|
||||
%4 = torch.prim.ListConstruct %1, %3 : (!torch.float, !torch.float) -> !torch.list<float>
|
||||
%5 = torch.aten.__interpolate.size_list_scale_list %arg0, %none_0, %4, %str, %false, %none_0, %false : !torch.vtensor<[1,1,2,4],f32>, !torch.none, !torch.list<float>, !torch.str, !torch.bool, !torch.none, !torch.bool -> !torch.vtensor<[?,?,?,?],f32>
|
||||
return %5 : !torch.vtensor<[?,?,?,?],f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_resize_nearest_half_pixel_round_prefer_floor
|
||||
func.func @test_resize_nearest_half_pixel_round_prefer_floor(%arg0: !torch.vtensor<[?,?,?],f32>, %arg1: !torch.vtensor<[3],si64>) -> !torch.vtensor<[?,?,?],f32> {
|
||||
// CHECK: %[[GENERIC:.*]] = linalg.generic
|
||||
// CHECK: %[[x11:.*]] = linalg.index 0 : index
|
||||
|
|
Loading…
Reference in New Issue