diff --git a/build_tools/write_env_file.sh b/build_tools/write_env_file.sh index 05179c56a..8f3c9a593 100755 --- a/build_tools/write_env_file.sh +++ b/build_tools/write_env_file.sh @@ -13,7 +13,7 @@ portable_realpath() { td="$(portable_realpath "$(dirname "$0")"/..)" build_dir="$(portable_realpath "${TORCH_MLIR_BUILD_DIR:-$td/build}")" -python_packages_dir="$build_dir/tools/torch-mlir/python_packages" +python_packages_dir="$build_dir/python_packages" write_env_file() { echo "Updating $build_dir/.env file" diff --git a/docs/adding_an_e2e_test.md b/docs/adding_an_e2e_test.md index 61664c7dc..7b74b904a 100644 --- a/docs/adding_an_e2e_test.md +++ b/docs/adding_an_e2e_test.md @@ -5,7 +5,7 @@ Adding support for a Torch operator in Torch-MLIR should always be accompanied by at least one end-to-end test to make sure the implementation of the op matches the behavior of PyTorch. The tests live in the -`torch-mlir/python/torch_mlir_e2e_test/test_suite/` directory. When adding a new +`torch-mlir/projects/pt1/python/torch_mlir_e2e_test/test_suite` directory. When adding a new test, choose a file that best matches the op you're testing, and if there is no file that best matches add a new file for your op. diff --git a/docs/development.md b/docs/development.md index d2b86504b..c60312e7a 100644 --- a/docs/development.md +++ b/docs/development.md @@ -20,6 +20,7 @@ source mlir_venv/bin/activate python -m pip install --upgrade pip # Install latest PyTorch nightlies and build requirements. python -m pip install -r requirements.txt +python -m pip install -r torchvision-requirements.txt ``` ## CMake Build @@ -108,25 +109,25 @@ cmake --build build ### Linux and macOS ```shell -export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples +export PYTHONPATH=`pwd`/build/python_packages/torch_mlir:`pwd`/projects/pt1/examples ``` ### Windows PowerShell ```shell -$env:PYTHONPATH = "$PWD/build/tools/torch-mlir/python_packages/torch_mlir;$PWD/examples" +$env:PYTHONPATH = "$PWD/build/python_packages/torch_mlir;$PWD/projects/pt1/examples" ``` ## Testing MLIR output in various dialects -To test the compiler's output to the different MLIR dialects, you can use the example `examples/torchscript_resnet18_all_output_types.py`. +To test the compiler's output to the different MLIR dialects, you can use the example `projects/pt1/examples/torchscript_resnet18_all_output_types.py`. Make sure you have activated the virtualenv and set the `PYTHONPATH` above (if running on Windows, modify the environment variable as shown above): ```shell source mlir_venv/bin/activate -export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples -python examples/torchscript_resnet18_all_output_types.py +export PYTHONPATH=`pwd`/build/tpython_packages/torch_mlir:`pwd`/projects/pt1/examples +python projects/pt1/examples/torchscript_resnet18_all_output_types.py ``` This will display the Resnet18 network example in three dialects: TORCH, LINALG on TENSORS and TOSA. @@ -331,8 +332,8 @@ Torch-MLIR has two types of tests: 1. End-to-end execution tests. These compile and run a program and check the result against the expected output from execution on native Torch. These use a homegrown testing framework (see - `python/torch_mlir_e2e_test/torchscript/framework.py`) and the test suite - lives at `python/torch_mlir_e2e_test/test_suite/__init__.py`. + `projects/pt1/python/torch_mlir_e2e_test/framework.py`) and the test suite + lives at `projects/pt1/python/torch_mlir_e2e_test/test_suite/__init__.py`. 2. Compiler and Python API unit tests. These use LLVM's `lit` testing framework. For example, these might involve using `torch-mlir-opt` to run a pass and