mirror of https://github.com/llvm/torch-mlir
Avoid `using` the `torch_upstream` namespace.
This is code that we always want to treat as "foreign" and not get too comfortable using in many functions. One way to accomplish that is to make it a bit clunkier to use. Also, fix Utils.cpp to match the LLVM/MLIR coding conventions (don't define functions inside namespaces -- prefer `using` and explicit qualification).pull/669/head
parent
84a9693006
commit
7ea50a537a
|
@ -21,6 +21,10 @@
|
|||
// original PyTorch license and the code here should not be mixed with "code
|
||||
// that we [Torch-MLIR] write".
|
||||
|
||||
// Note: As a coding convention, we should never `using` the `torch_upstream`
|
||||
// namespace. This is to ensure that at a glance from the code, it is clear
|
||||
// that we are referencing upstream types.
|
||||
|
||||
namespace mlir {
|
||||
namespace torch {
|
||||
namespace torch_upstream {
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
using namespace mlir;
|
||||
using namespace mlir::torch;
|
||||
using namespace mlir::torch::Torch;
|
||||
using namespace mlir::torch::torch_upstream; // For ScalarType and type
|
||||
|
||||
// Helper funtion to get rank of `Base tensor type`.
|
||||
// -1 is returned if the tensorRank can't be determined.
|
||||
|
|
|
@ -10,21 +10,19 @@
|
|||
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
||||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
||||
|
||||
using namespace mlir::torch::torch_upstream;
|
||||
using namespace mlir;
|
||||
using namespace mlir::torch;
|
||||
using namespace mlir::torch::Torch;
|
||||
|
||||
namespace mlir {
|
||||
namespace torch {
|
||||
namespace Torch {
|
||||
|
||||
int64_t toPositiveDim(int64_t dim, int64_t inputRank) {
|
||||
int64_t Torch::toPositiveDim(int64_t dim, int64_t inputRank) {
|
||||
return dim >= 0 ? dim : dim + inputRank;
|
||||
}
|
||||
|
||||
bool isValidDim(int64_t dim, int64_t inputRank) {
|
||||
bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
|
||||
return dim >= 0 && dim < inputRank;
|
||||
}
|
||||
|
||||
bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
|
||||
bool Torch::getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
|
||||
auto listConstruct = v.getDefiningOp<PrimListConstructOp>();
|
||||
if (!listConstruct)
|
||||
return false;
|
||||
|
@ -32,30 +30,30 @@ bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
|
|||
return true;
|
||||
}
|
||||
|
||||
ScalarType getScalarTypeForType(Type type) {
|
||||
torch_upstream::ScalarType Torch::getScalarTypeForType(Type type) {
|
||||
if (type.isa<Float32Type>())
|
||||
return ScalarType::Float;
|
||||
return torch_upstream::ScalarType::Float;
|
||||
if (type.isa<Float64Type>())
|
||||
return ScalarType::Double;
|
||||
return torch_upstream::ScalarType::Double;
|
||||
if (type.isSignedInteger(64))
|
||||
return ScalarType::Long;
|
||||
return torch_upstream::ScalarType::Long;
|
||||
if (type.isSignedInteger(32))
|
||||
return ScalarType::Int;
|
||||
return torch_upstream::ScalarType::Int;
|
||||
if (type.isUnsignedInteger(1))
|
||||
return ScalarType::Bool;
|
||||
return torch_upstream::ScalarType::Bool;
|
||||
llvm::report_fatal_error("unhandled type for getScalarTypeForType");
|
||||
}
|
||||
|
||||
Value getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
|
||||
Type dtype) {
|
||||
static Value getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
|
||||
Type dtype) {
|
||||
int intType = (int)getScalarTypeForType(dtype);
|
||||
return rewriter.create<ConstantIntOp>(loc,
|
||||
rewriter.getI64IntegerAttr(intType));
|
||||
}
|
||||
|
||||
// Helper to convert a tensor to a specific scalar type.
|
||||
Value convertTensorToDtype(PatternRewriter &rewriter, Location loc, Value input,
|
||||
Type dtype) {
|
||||
Value Torch::convertTensorToDtype(PatternRewriter &rewriter, Location loc,
|
||||
Value input, Type dtype) {
|
||||
BaseTensorType origType = input.getType().cast<BaseTensorType>();
|
||||
Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype);
|
||||
// `convertIntVal` contains the corresponding integer for the dtype which is
|
||||
|
@ -67,7 +65,3 @@ Value convertTensorToDtype(PatternRewriter &rewriter, Location loc, Value input,
|
|||
loc, newType, input, convertIntVal, falseVal, falseVal, noneVal);
|
||||
return converted;
|
||||
}
|
||||
|
||||
} // namespace Torch
|
||||
} // namespace torch
|
||||
} // namespace mlir
|
||||
|
|
Loading…
Reference in New Issue