[Torch] Support Aten__And__ScalarOp (#3114)

pull/3116/head
Xinyu Yang 2024-04-08 20:24:17 +08:00 committed by GitHub
parent 2c56ef9252
commit 84c24e5771
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 128 additions and 4 deletions

View File

@ -7556,6 +7556,31 @@ def Torch_Aten__And__TensorOp : Torch_Op<"aten.__and__.Tensor", [
}];
}
def Torch_Aten__And__ScalarOp : Torch_Op<"aten.__and__.Scalar", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::__and__.Scalar : (Tensor, Scalar) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchScalarType:$other
);
let results = (outs
AnyTorchOptionalTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult Aten__And__ScalarOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void Aten__And__ScalarOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
let hasCanonicalizer = 1;
}
def Torch_Aten__Or__TensorOp : Torch_Op<"aten.__or__.Tensor", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -577,13 +577,24 @@ public:
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getSelf();
Value rhs = adaptor.getOther();
RankedTensorType lhsTy = lhs.getType().dyn_cast<RankedTensorType>();
RankedTensorType rhsTy = rhs.getType().dyn_cast<RankedTensorType>();
if (!lhsTy)
return op.emitError("lhs must be a ranked tensor type");
TensorType outType = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<TensorType>();
Value lhs =
hlo::promoteType(rewriter, op.getLoc(), adaptor.getSelf(), outType);
Value rhs =
hlo::promoteType(rewriter, op.getLoc(), adaptor.getOther(), outType);
Type outElemTy = outType.getElementType();
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
if (!rhsTy) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy);
}
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
@ -1861,6 +1872,8 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalOrOp, chlo::BroadcastOrOp);
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalAndOp, chlo::BroadcastAndOp);
INSERT_BINARY_LOGICAL_PATTERN(AtenLogicalXorOp, chlo::BroadcastXorOp);
INSERT_BINARY_LOGICAL_PATTERN(AtenBitwiseAndScalarOp, chlo::BroadcastAndOp);
#undef INSERT_BINARY_LOGICAL_PATTERN
#define INSERT_ATENOP_PATTERN(AtenOp) \

View File

@ -1872,6 +1872,18 @@ void Aten__Or__TensorOp::getCanonicalizationPatterns(
});
}
//===----------------------------------------------------------------------===//
// Aten__And__ScalarOp
//===----------------------------------------------------------------------===//
void Aten__And__ScalarOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__And__ScalarOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenBitwiseAndScalarOp>(
op, op.getType(), op.getSelf(), op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenScalarImplicitOp
//===----------------------------------------------------------------------===//

View File

@ -6938,6 +6938,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.__and__.Scalar\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.remainder.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
@ -10839,6 +10843,15 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
" return %4 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.__and__.Scalar\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number) -> !torch.int {\n"
" %none = torch.constant.none\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = torch.prim.ListConstruct %0#0, %none : (!torch.int, !torch.none) -> !torch.list<optional<int>>\n"
" %2 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.get_dtype_of_scalar(%arg1) : (!torch.number) -> !torch.int\n"
" %3 = torch.prim.ListConstruct %0#1, %2 : (!torch.int, !torch.int) -> !torch.list<int>\n"
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
" return %4 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.__and__.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"

View File

@ -500,6 +500,7 @@ STABLEHLO_PASS_SET = {
"ElementwiseNeIntTensorStaticModule_basic",
"ElementwiseNegModule_basic",
"ElementwiseOrTensorStaticShapeModule_basic",
"ElementwiseAndScalarStaticShapeModule_basic",
"ElementwisePowTensorBroadcastStaticModule_basic",
"ElementwisePowTensorStaticModule_basic",
"ElementwisePreluStaticModule_basic",
@ -1667,6 +1668,8 @@ ONNX_XFAIL_SET = {
"DivIntModule_basic",
"ElementwiseAcoshIntModule_basic",
"ElementwiseAcoshModule_basic",
"ElementwiseAndScalarModule_basic",
"ElementwiseAndScalarStaticShapeModule_basic",
"ElementwiseAsinhIntModule_basic",
"ElementwiseAsinhModule_basic",
"ElementwiseAtanhIntModule_basic",

View File

@ -478,6 +478,9 @@ def atendivScalar〡shape(self: List[int], other: float) -> List[int]:
def atenremainderScalar〡shape(self: List[int], other: float) -> List[int]:
return upstream_shape_functions.unary(self)
def aten__and__Scalar〡shape(self: List[int], other: float) -> List[int]:
return upstream_shape_functions.unary(self)
def atenremainderTensor〡shape(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)
@ -3002,6 +3005,15 @@ def atenrsubScalar〡dtype(self_rank_dtype: Tuple[int, int], other: Union[
self_rank, self_dtype = self_rank_dtype
return promote_dtypes([self_rank, None], [self_dtype, get_dtype_of_scalar(other)])
@check_dtype_function(
_check_tensors_with_the_same_dtype(num_of_tensors=1, other=0.0) +
_check_tensors_with_the_same_dtype(num_of_tensors=1, other=0))
def aten__and__Scalar〡dtype(self_rank_dtype: Tuple[int, int], other: Union[int, float, complex]) -> int:
self_rank, self_dtype = self_rank_dtype
ranks: List[Optional[int]] = [self_rank, None]
dtypes = [self_dtype, get_dtype_of_scalar(other)]
return promote_dtypes(ranks, dtypes)
@check_dtype_function(_check_two_tensor_op())
def aten__and__Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
other_rank, other_dtype = other_rank_dtype

View File

@ -535,6 +535,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::logsumexp : (Tensor, int[], bool) -> (Tensor)")
emit("aten::mean.dim : (Tensor, int[]?, bool, int?) -> (Tensor)")
emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)")
emit("aten::__and__.Scalar : (Tensor, Scalar) -> (Tensor)", has_canonicalizer=True)
emit("aten::__or__.Tensor : (Tensor, Tensor) -> (Tensor)", has_canonicalizer=True)
emit("aten::_softmax : (Tensor, int, bool) -> (Tensor)")
emit("aten::mean : (Tensor, int?) -> (Tensor)")

View File

@ -3070,6 +3070,51 @@ def ElementwiseOrTensorStaticShapeModule_basic(module, tu: TestUtils):
# ==============================================================================
class ElementwiseAndscalarModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int32, True),
])
def forward(self, x):
return torch.ops.aten.__and__(x, 12)
@register_test_case(module_factory=lambda: ElementwiseAndscalarModule())
def ElementwiseAndScalarModule_basic(module, tu: TestUtils):
module.forward(
tu.randint(3, 4, low=-10, high=10).to(torch.int32))
# ==============================================================================
class ElementwiseAndScalarStaticShapeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([3, 4], torch.int32, True)
])
def forward(self, x):
return torch.ops.aten.__and__(x, 12)
@register_test_case(module_factory=lambda: ElementwiseAndScalarStaticShapeModule())
def ElementwiseAndScalarStaticShapeModule_basic(module, tu: TestUtils):
module.forward(
tu.randint(3, 4, low=-10, high=10).to(torch.int32))
# ==============================================================================
class ElementwiseBitwiseXorModule(torch.nn.Module):
def __init__(self):