[onnx] Fix onnx.ReduceMean lowering (#3002)

Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
pull/2920/head
Rob Suderman 2024-03-11 11:32:53 -07:00 committed by GitHub
parent 229ca3a9e1
commit 8fb28661f9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 126 additions and 211 deletions

View File

@ -845,157 +845,96 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
/*dtype=*/noneVal);
return success();
});
// onnx.ReduceMean with axes provided as argument introduced in opset 18
patterns.onOp(
"ReduceMean", 18,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// deal with case when axes is empty
if (sizes.size() == 1 && sizes[0] == 0) {
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, /*dim=*/noneVal, keepDimsBool,
/*dtype=*/noneVal);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
// convert axes (tensor) into torch int list while dealing with neg axis
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);
return success();
});
// onnx.ReduceMean with axes provided as attribute
patterns.onOp(
"ReduceMean", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
llvm::SmallVector<int64_t> axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperand(data) || binder.tensorResultType(resultType) ||
binder.s64IntegerArrayAttr(axes, "axes", 0) ||
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// deal with case when axes is empty
if (axes.size() == 0) {
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
SmallVector<Value> axesList;
Value axesVal;
if (!binder.tensorOperandAtIndex(axesVal, 1)) {
Torch::BaseTensorType axesType =
axesVal.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes{1};
auto selType = rewriter.getType<Torch::ValueTensorType>(
selectSizes, axesType.getOptionalDtype());
auto axesTy = dyn_cast<Torch::ValueTensorType>(axesVal.getType());
auto axesShape = axesTy.getSizes();
if (axesShape.size() != 1 || axesShape[0] == Torch::kUnknownSize)
return failure();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
int64_t numAxes = axesShape[0];
for (int64_t i = 0; i < numAxes; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, /*dim=*/noneVal, keepDimsBool,
/*dtype=*/noneVal);
} else {
rewriter.replaceOp(binder.op, data);
rewriter.getI64IntegerAttr(i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selType, axesVal, zero, iv);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
axesList.push_back(dim);
}
}
SmallVector<int64_t> axesInts;
if (!binder.s64IntegerArrayAttr(axesInts, "axes", {})) {
for (int64_t i = 0, s = axesInts.size(); i < s; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(axesInts[i]));
axesList.push_back(iv);
}
}
// deal with case when axes is empty
if (axesList.empty() && noop_with_empty_axes) {
rewriter.replaceOp(binder.op, data);
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
// convert axes (tensor) into torch int list while dealing with neg axis
for (uint64_t i = 0; i < axes.size(); i++) {
// Go through the axes list and get each dim in the list
int64_t dim = axes[i];
if (dim < 0) {
dim += adjustmentInt;
}
// deal with neg axis: if (axis < 0) axis += rank
Value finalDim = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim));
dimList.push_back(finalDim);
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(adjustmentInt));
// Handle if the axes value is less than zero:
for (int i = 0, s = axesList.size(); i < s; i++) {
Value isNegative = rewriter.create<Torch::AtenLtIntOp>(
binder.getLoc(), axesList[i], zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), axesList[i], finalOffset);
axesList[i] = finalDim;
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
axesList);
Value keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), keepDims);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);

View File

@ -1474,15 +1474,7 @@ LTC_XFAIL_SET = {
ONNX_XFAIL_SET = {
# Failure - cast error
"MeanDimNoneDimModule_basic",
"MeanDtypeModule_basic",
"MeanDynamicSizesModule_basic",
"MeanModule_basic",
"MseLossMeanReductionModule_basic",
"PermuteNegativeIndexModule_basic",
"StdBiasedModule_basic",
"VarBiasedModule_basic",
"VarMeanBiasedModule_basic",
# Failure - incorrect numerics
"AdaptiveAvgPool1dUnitOutputSizeDynamicModule_basic",
@ -1992,17 +1984,7 @@ ONNX_XFAIL_SET = {
"NativeDropoutTrainStaticShapeModule_basic",
"ReduceProdDimIntFloatModule_basic",
"StdCorrectionLargeInputModule_basic",
"StdCorrectionModule_basic",
"StdCorrectionNoneModule_basic",
"StdDimNoneDimModule_basic",
"StdUnbiasedModule_basic",
"VarCorrectionLargeInputModule_basic",
"VarCorrectionModule_basic",
"VarCorrectionNoneModule_basic",
"VarDimNoneDimModule_basic",
"VarMeanCorrectionNoneModule_basic",
"VarMeanUnbiasedModule_basic",
"VarUnbiasedModule_basic",
# Failure - onnx_lowering: onnx.ReduceSum
"MseLossSumReductionWithDifferentElemTypeModule_basic",

View File

@ -969,77 +969,71 @@ func.func @test_reduce_sum_negative_axes_keepdims_example(%arg0: !torch.vtensor<
// -----
// CHECK-LABEL: func.func @test_reduce_mean_default_axes_keepdims_example
func.func @test_reduce_mean_default_axes_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[INT1:.+]] = torch.constant.int 1
// CHECK: torch.aten.Bool.int %int1 : !torch.int -> !torch.bool
// CHECK: torch.aten.mean.dim %arg0, %[[NONE]], %0, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32>
return %0 : !torch.vtensor<[1,1,1],f32>
// CHECK-LABEL: @test_reduce_mean_negative_axes_keepdims_example
func.func @test_reduce_mean_negative_axes_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>) -> !torch.vtensor<[3,1,2],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 13 : si64} {
// CHECK: %[[TENSOR:.+]] = torch.vtensor.literal(dense<-2> : tensor<1xsi64>) : !torch.vtensor<[1],si64>
// CHECK: %[[DIM:.+]] = torch.constant.int 0
// CHECK: %[[A0:.+]] = torch.constant.int 0
// CHECK: %[[SEL0:.+]] = torch.aten.select.int %[[TENSOR]], %[[DIM]], %[[A0]]
// CHECK: %[[ITEM0:.+]] = torch.aten.item %[[SEL0]]
// CHECK: %[[ZERO:.+]] = torch.constant.int 0
// CHECK: %[[RANK:.+]] = torch.constant.int 3
// CHECK: %[[LT0:.+]] = torch.aten.lt.int %[[ITEM0]], %[[ZERO]]
// CHECK: %[[BOOL0:.+]] = torch.aten.Int.bool %[[LT0]]
// CHECK: %[[MUL0:.+]] = torch.aten.mul.int %[[BOOL0]], %[[RANK]]
// CHECK: %[[ADD0:.+]] = torch.aten.add.int %[[ITEM0]], %[[MUL0]]
// CHECK: %[[LIST:.+]] = torch.prim.ListConstruct %[[ADD0]]
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.mean.dim %arg0, %[[LIST]], %[[TRUE]], %[[NONE]]
// CHECK: return %[[SUM]]
%cst = torch.vtensor.literal(dense<-2> : tensor<1xsi64>) : !torch.vtensor<[1],si64>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %cst) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
// -----
// CHECK-LABEL: func.func @test_reduce_mean_do_not_keepdims_example
func.func @test_reduce_mean_do_not_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT3:.+]] = torch.constant.int 3
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: torch.aten.select.int %arg1, %int0, %int0_0 : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: torch.aten.item %0 : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: torch.aten.lt.int %1, %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.aten.Int.bool %2 : !torch.bool -> !torch.int
// CHECK: torch.aten.mul.int %3, %int3 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: torch.aten.mean.dim %arg0, %6, %false, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 0 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32>
// CHECK-LABEL: @test_reduce_mean_one_axes_dropdims_example
func.func @test_reduce_mean_one_axes_dropdims_example(%arg0: !torch.vtensor<[3,2,2],f32>) -> !torch.vtensor<[3,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64} {
// CHECK: %[[TENSOR:.+]] = torch.vtensor.literal(dense<1> : tensor<1xsi64>) : !torch.vtensor<[1],si64>
// CHECK: %[[DIM:.+]] = torch.constant.int 0
// CHECK: %[[A0:.+]] = torch.constant.int 0
// CHECK: %[[SEL0:.+]] = torch.aten.select.int %[[TENSOR]], %[[DIM]], %[[A0]]
// CHECK: %[[ITEM0:.+]] = torch.aten.item %[[SEL0]]
// CHECK: %[[ZERO:.+]] = torch.constant.int 0
// CHECK: %[[RANK:.+]] = torch.constant.int 3
// CHECK: %[[LT0:.+]] = torch.aten.lt.int %[[ITEM0]], %[[ZERO]]
// CHECK: %[[BOOL0:.+]] = torch.aten.Int.bool %[[LT0]]
// CHECK: %[[MUL0:.+]] = torch.aten.mul.int %[[BOOL0]], %[[RANK]]
// CHECK: %[[ADD0:.+]] = torch.aten.add.int %[[ITEM0]], %[[MUL0]]
// CHECK: %[[LIST:.+]] = torch.prim.ListConstruct %[[ADD0]]
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.mean.dim %arg0, %[[LIST]], %[[FALSE]], %[[NONE]]
// CHECK: return %[[SUM]]
%cst = torch.vtensor.literal(dense<1> : tensor<1xsi64>) : !torch.vtensor<[1],si64>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %cst) {torch.onnx.keepdims = 0 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32>
return %0 : !torch.vtensor<[3,2],f32>
}
// -----
// CHECK-LABEL: func.func @test_reduce_mean_keepdims_example
func.func @test_reduce_mean_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK-LABEL: @test_reduce_mean_one_axesattr_dropdims_example
func.func @test_reduce_mean_one_axesattr_dropdims_example(%arg0: !torch.vtensor<[3,2,2],f32>) -> !torch.vtensor<[3,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64} {
// CHECK: %[[INT1:.+]] = torch.constant.int 1
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT3:.+]] = torch.constant.int 3
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: torch.aten.select.int %arg1, %int0, %int0_0 : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: torch.aten.item %0 : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: torch.aten.lt.int %1, %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.aten.Int.bool %2 : !torch.bool -> !torch.int
// CHECK: torch.aten.mul.int %3, %int3 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
// -----
// CHECK-LABEL: func.func @test_reduce_mean_negative_axes_keepdims_example
func.func @test_reduce_mean_negative_axes_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[LT:.+]] = torch.aten.lt.int %[[INT1]], %[[INT0]]
// CHECK: %[[BOOL:.+]] = torch.aten.Int.bool %[[LT]]
// CHECK: %[[MUL:.+]] = torch.aten.mul.int %[[BOOL]], %[[INT3]]
// CHECK: %[[ADD:.+]] = torch.aten.add.int %[[INT1]], %[[MUL]]
// CHECK: %[[LIST:.+]] = torch.prim.ListConstruct %[[ADD]]
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT3:.+]] = torch.constant.int 3
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: torch.aten.select.int %arg1, %int0, %int0_0 : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: torch.aten.item %0 : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: torch.aten.lt.int %1, %int0 : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.aten.Int.bool %2 : !torch.bool -> !torch.int
// CHECK: torch.aten.mul.int %3, %int3 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
// CHECK: %[[MEAN:.+]] = torch.aten.mean.dim %arg0, %[[LIST]], %[[FALSE]], %[[NONE]]
// CHECK: return %[[MEAN]]
%0 = torch.operator "onnx.ReduceMean"(%arg0) {torch.onnx.keepdims = 0 : si64, torch.onnx.axes = [1 : si64]} : (!torch.vtensor<[3,2,2],f32>) -> !torch.vtensor<[3,2],f32>
return %0 : !torch.vtensor<[3,2],f32>
}
// -----
@ -1387,11 +1381,11 @@ func.func @test_slice_default_axes_and_slices(%arg0: !torch.vtensor<[20,10,5],f3
// CHECK: %[[ZERO0:.*]] = torch.constant.int 0
// CHECK-NEXT: %[[ZERO1:.*]] = torch.constant.int 0
// CHECK-NEXT: %[[SCALAR:.*]] = torch.prim.NumToTensor.Scalar %[[ZERO1]] : !torch.int -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[SELECT0:.*]] = torch.aten.index_select %[[ARG1]], %[[ZERO]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[SELECT0:.*]] = torch.aten.index_select %[[ARG1]], %[[ZERO0]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[ITEM0:.*]] = torch.aten.item %[[SELECT0]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK-NEXT: %[[SELECT1:.*]] = torch.aten.index_select %[[ARG2]], %[[ZERO]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[SELECT1:.*]] = torch.aten.index_select %[[ARG2]], %[[ZERO0]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[ITEM1:.*]] = torch.aten.item %[[SELECT1]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK-NEXT: %[[SELECT3:.*]] = torch.aten.index_select %{{.*}}, %[[ZERO]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[SELECT3:.*]] = torch.aten.index_select %{{.*}}, %[[ZERO0]], %[[SCALAR]] : !torch.vtensor<[1],si64>, !torch.int, !torch.vtensor<[1],si64> -> !torch.vtensor<[1],si64>
// CHECK-NEXT: %[[ITEM3:.*]] = torch.aten.item %[[SELECT3]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: torch.aten.slice.Tensor %[[ARG0]], %[[ZERO1]], %[[ITEM0]], %[[ITEM1]], %[[ITEM3]] : !torch.vtensor<[20,10,5],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[20,10,1],f32>