aten.abs and aten.reciprocal to linalg

pull/441/head
ds1231h 2021-11-30 14:46:51 +08:00 committed by Yi Zhang
parent 5d28549c2c
commit 9ad5954e41
5 changed files with 125 additions and 5 deletions

View File

@ -499,6 +499,43 @@ def ElementwiseRsqrtModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseAbsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.abs(a)
@register_test_case(module_factory=lambda: ElementwiseAbsModule())
def ElementwiseAbsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5, low=-1.0, high=1.0))
# ==============================================================================
class ElementwiseReciprocalModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
])
def forward(self, a):
return torch.reciprocal(a)
@register_test_case(module_factory=lambda: ElementwiseReciprocalModule())
def ElementwiseReciprocalModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4))
# ==============================================================================
class ElementwiseDivScalarModule(torch.nn.Module):
def __init__(self):
super().__init__()

View File

@ -936,6 +936,62 @@ def Torch_AtenRsqrt_Op : Torch_Op<"aten.rsqrt_", [
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenAbsOp : Torch_Op<"aten.abs", [
AllowsTypeRefinement,
HasValueSemantics
]> {
let summary = "Generated op for `aten::abs : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenAbs_Op : Torch_Op<"aten.abs_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::abs_ : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenReciprocalOp : Torch_Op<"aten.reciprocal", [
AllowsTypeRefinement,
HasValueSemantics
]> {
let summary = "Generated op for `aten::reciprocal : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenReciprocal_Op : Torch_Op<"aten.reciprocal_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::reciprocal_ : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
def Torch_AtenMaximumOp : Torch_Op<"aten.maximum", [
AllowsTypeRefinement,
HasValueSemantics

View File

@ -1396,6 +1396,8 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
return b.create<math::RsqrtOp>(loc, payloadArgs[0]);
if (isa<AtenLog2Op>(op))
return b.create<math::Log2Op>(loc, payloadArgs[0]);
if (isa<AtenAbsOp>(op))
return b.create<math::AbsOp>(loc, payloadArgs[0]);
if (isa<AtenSigmoidOp>(op)) {
Type elementType = payloadArgs[0].getType();
auto one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
@ -1661,6 +1663,28 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
return b.create<arith::DivFOp>(loc, self, other);
}
if (auto reciprocal = dyn_cast<AtenReciprocalOp>(op)) {
if (!reciprocal.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
reciprocal.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Type elementType = payloadArgs[0].getType();
// assert(element != 0)
auto zero =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.0));
auto pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ONE,
payloadArgs[0], zero);
b.create<AssertOp>(
loc, pred, b.getStringAttr("unimplemented: tensor with zero element"));
auto one =
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1.0));
return b.create<arith::DivFOp>(loc, one, payloadArgs[0]);
}
op->emitError("unimplemented lowering in "
"createLinalgPayloadCalculationForElementwiseOp");
@ -1872,8 +1896,8 @@ struct ConvertElementwiseOp : ConversionPattern {
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp,
AtenMulScalarOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp, AtenDivScalarOp>(
op))
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp, AtenDivScalarOp,
AtenAbsOp, AtenReciprocalOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
@ -3055,7 +3079,8 @@ public:
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp, AtenLerpTensorOp,
AtenSigmoidOp, AtenMinimumOp, AtenMaximumOp, AtenToDtypeOp, AtenClampOp,
AtenRsubScalarOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp>();
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp, AtenAbsOp,
AtenReciprocalOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenUnsqueezeOp>();
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);

View File

@ -232,8 +232,8 @@ public:
AtenMaskedFill_ScalarOp, AtenCopy_Op, AtenIndexPut_Op, AtenCumsumOp,
AtenLayerNormOp, AtenClampOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
AtenLog2Op, Aten_SoftmaxBackwardDataOp, AtenRsqrtOp, AtenDropoutOp,
AtenTanhBackwardOp, Aten_LogSoftmaxBackwardDataOp, AtenAddIntOp>(
op)) {
AtenTanhBackwardOp, Aten_LogSoftmaxBackwardDataOp, AtenAddIntOp,
AtenAbsOp, AtenReciprocalOp>(op)) {
return getLatticeElement(op->getResult(0)).join(*operands[0]);
}

View File

@ -468,6 +468,8 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
"aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor)",
"aten::log2 : (Tensor) -> (Tensor)",
"aten::rsqrt : (Tensor) -> (Tensor)",
"aten::abs : (Tensor) -> (Tensor)",
"aten::reciprocal : (Tensor) -> (Tensor)",
]:
emit_with_mutating_variants(key)
# Elementwise tensor compute ops that don't have the standard mutating