mirror of https://github.com/llvm/torch-mlir
Revert updating mlir_native_functions.cpp signature (#1281)
* Revert updating mlir_native_functions.cpp signature, due to a7edf71360
* Restored NewZeros to LTC XFAIL set
pull/1287/head
parent
233fd1246b
commit
a1ace0657d
|
@ -435,6 +435,12 @@ LTC_XFAIL_SET = {
|
|||
"NewOnesModuleFloat3D_basic",
|
||||
"NewOnesModuleInt2D_basic",
|
||||
"NewOnesModuleInt3D_basic",
|
||||
"NewZerosModuleDefaultDtype_basic",
|
||||
"NewZerosModuleFalsePinMemory_basic",
|
||||
"NewZerosModuleFloat2D_basic",
|
||||
"NewZerosModuleFloat3D_basic",
|
||||
"NewZerosModuleInt2D_basic",
|
||||
"NewZerosModuleInt3D_basic",
|
||||
"OnesLikeModule_defaultDtype",
|
||||
"OnesLikeModule_falsePinMemory",
|
||||
"OnesLikeModule_float",
|
||||
|
|
|
@ -302,14 +302,10 @@ at::Tensor LazyNativeFunctions::_to_copy(
|
|||
};
|
||||
|
||||
at::Tensor LazyNativeFunctions::empty(
|
||||
at::SymIntArrayRef sym_size,
|
||||
c10::optional<at::ScalarType> dtype,
|
||||
c10::optional<at::Layout> layout,
|
||||
c10::optional<at::Device> device,
|
||||
at::IntArrayRef size, c10::optional<at::ScalarType> dtype,
|
||||
c10::optional<at::Layout> layout, c10::optional<at::Device> device,
|
||||
c10::optional<bool> pin_memory,
|
||||
c10::optional<at::MemoryFormat> memory_format) {
|
||||
// TODO: support this directly
|
||||
auto size = c10::asIntArrayRefSlow(sym_size);
|
||||
const auto device_type = torch::lazy::getBackend()->EagerFallbackDeviceType();
|
||||
at::TensorOptions options = at::TensorOptions()
|
||||
.device(c10::Device(device_type))
|
||||
|
@ -321,9 +317,8 @@ at::Tensor LazyNativeFunctions::empty(
|
|||
// See Note [Lazy Tensor Functionalization]
|
||||
if (c10::impl::tls_local_dispatch_key_set().excluded_.has(
|
||||
c10::DispatchKey::Functionalize)) {
|
||||
// Invariant: if the functionalization key is in the exclude set, then we're
|
||||
// expected to return an ordinary tensor, which will be "lifted" into a
|
||||
// functional wrapper later.
|
||||
// Invariant: if the functionalization key is in the exclude set, then we're expected
|
||||
// to return an ordinary tensor, which will be "lifted" into a functional wrapper later.
|
||||
return tensor;
|
||||
} else {
|
||||
auto wrapped = at::functionalization::impl::to_functional_tensor(tensor);
|
||||
|
@ -336,13 +331,7 @@ at::Tensor LazyNativeFunctions::empty_strided(
|
|||
c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout,
|
||||
c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
||||
TORCH_LAZY_FN_COUNTER("lazy::");
|
||||
at::Tensor t = empty(
|
||||
c10::SymIntArrayRef::fromIntArrayRef(size),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
c10::nullopt);
|
||||
at::Tensor t = empty(size, dtype, layout, device, pin_memory, c10::nullopt);
|
||||
return t.as_strided(size, stride, /*storage_offset=*/0);
|
||||
}
|
||||
|
||||
|
@ -361,8 +350,7 @@ LazyNativeFunctions::fill_(at::Tensor& self, const at::Scalar& value) {
|
|||
at::Tensor LazyNativeFunctions::_unsafe_view(
|
||||
const at::Tensor& self, at::IntArrayRef size) {
|
||||
TORCH_LAZY_FN_COUNTER("lazy::");
|
||||
return LazyNativeFunctions::view_copy(
|
||||
self, c10::SymIntArrayRef::fromIntArrayRef(size));
|
||||
return LazyNativeFunctions::view_copy(self, size);
|
||||
}
|
||||
|
||||
// This is needed by the torch.tensor constructor.
|
||||
|
@ -398,10 +386,7 @@ at::Tensor LazyNativeFunctions::new_empty_strided(
|
|||
}
|
||||
|
||||
at::Tensor LazyNativeFunctions::narrow_copy(
|
||||
const at::Tensor& self,
|
||||
int64_t dim,
|
||||
c10::SymInt start,
|
||||
c10::SymInt length) {
|
||||
const at::Tensor& self, int64_t dim, int64_t start, int64_t length) {
|
||||
return at::functionalization::functionalize_aten_op<ATEN_OP(
|
||||
narrow_copy)>::call(self, dim, start, length);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue