[torchdynamo] Update XFAIL sets with upstream bug numbers.

pull/1645/head snapshot-20221126.669
Sean Silva 2022-11-24 14:36:13 +00:00
parent 853fd5c965
commit a24c7039f7
1 changed files with 6 additions and 0 deletions

View File

@ -49,13 +49,16 @@ TORCHDYNAMO_XFAIL_SET = {
# RecursionError: maximum recursion depth exceeded
# RuntimeError: Failed running call_function aten.lift_fresh_copy(...
# https://github.com/pytorch/pytorch/issues/89627
"LiftFreshCopyModule_basic",
# TypeError: new_empty(): argument 'size' (position 1) must be tuple of ints, but found element of type NoneType at pos 0
# RuntimeError: Failed running call_function aten.convolution_backward(...
# https://github.com/pytorch/pytorch/issues/89629
"ConvolutionBackwardModule2DPadded_basic",
"ConvolutionBackwardModule2D_basic",
# RuntimeError: Index tensor must have the same number of dimensions as self tensor
# RuntimeError: Failed running call_function aten.nll_loss_backward(...
# https://github.com/pytorch/pytorch/issues/89630
"NllLossModuleBackward1DMeanWeight_basic",
"NllLossModuleBackward1DMean_basic",
"NllLossModuleBackward1DSumWeight_basic",
@ -64,8 +67,11 @@ TORCHDYNAMO_XFAIL_SET = {
"NllLossModuleBackward1D_basic",
# Decomposition assertion:
# assert device is not None or dtype is not None or memory_format is not None
# https://github.com/pytorch/pytorch/issues/89633
"ToCopyModule_basic",
# TypeError: expected np.ndarray (got float)
# TODO: This is due to returning a scalar float as output from the test.
# We should probably just standardize all tests to return tensors.
"DivIntModule_basic",
#### Torch-MLIR internal compiler errors