mirror of https://github.com/llvm/torch-mlir
build: update llvm tag to bebc9695 (#1415)
Summary of changes: - Renamed OptionalArrayRefParameter since the name conflicts with an upstream symbol that has a different meaning (https://reviews.llvm.org/D133819) - Removed extraneous dependency between TorchMLIRTorchToMhlo and ChloOps, since the existing dependency on MhloDialect is sufficient - Fixed code to prevent warnings related to comparisons between signed and unsigned valuespull/1417/head
parent
3e27aa2be3
commit
a60acf272d
|
@ -1 +1 @@
|
|||
Subproject commit 458598ccc50c5118107f05d60f3d043772a91f26
|
||||
Subproject commit bebc96956b76bdbc36f1d82a788c810e5b12e2c5
|
|
@ -1 +1 @@
|
|||
Subproject commit cd9da150e729fd046109e7962e5f63f5fe067a3b
|
||||
Subproject commit 7b0ecf7827e3fc07d2af90e147bcedc165bc78ac
|
|
@ -45,7 +45,7 @@ def Torch_NnModuleType : Torch_Type<"NnModule", "nn.Module"> {
|
|||
}
|
||||
|
||||
// For standard ArrayRefs, which require allocation.
|
||||
class OptionalArrayRefParameter<string arrayOf, string desc = ""> :
|
||||
class OptionalArrayRefTorchParameter<string arrayOf, string desc = ""> :
|
||||
AttrOrTypeParameter<
|
||||
"::llvm::Optional<::llvm::ArrayRef<" # arrayOf # ">>", desc> {
|
||||
let allocator = [{
|
||||
|
@ -146,7 +146,7 @@ class AnyTorchTensorType<string name, string typeMnemonic>
|
|||
- `getElementType()` -> `getDtype()` (but be sure that `hasDtype()` though).
|
||||
}];
|
||||
let parameters = (ins
|
||||
OptionalArrayRefParameter<"int64_t", "sizes of dimensions">:$optionalSizes,
|
||||
OptionalArrayRefTorchParameter<"int64_t", "sizes of dimensions">:$optionalSizes,
|
||||
"::mlir::Type":$optionalDtype
|
||||
);
|
||||
let genVerifyDecl = 1;
|
||||
|
|
|
@ -22,7 +22,6 @@ add_mlir_conversion_library(TorchMLIRTorchToMhlo
|
|||
Core
|
||||
|
||||
LINK_LIBS PUBLIC
|
||||
ChloOps
|
||||
MLIRIR
|
||||
MLIRPass
|
||||
MhloDialect
|
||||
|
|
|
@ -102,13 +102,13 @@ RankedTensorType castContractingDim(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
SmallVector<int64_t> outShape;
|
||||
// set batch dims, will skip invalid dimensions
|
||||
for (size_t k = 0; k < lhsShape.size(); ++k) {
|
||||
for (int64_t k = 0; k < static_cast<int64_t>(lhsShape.size()); ++k) {
|
||||
if (k == lhsResultDim || k == lhsContractingDim)
|
||||
continue;
|
||||
outShape.push_back(lhsShape[k]);
|
||||
}
|
||||
for (size_t k = 0, b = 0; k < rhsShape.size(); ++k) {
|
||||
if (b >= outShape.size())
|
||||
for (int64_t k = 0, b = 0; k < static_cast<int64_t>(rhsShape.size()); ++k) {
|
||||
if (b >= static_cast<int64_t>(outShape.size()))
|
||||
break;
|
||||
if (k == rhsResultDim || k == rhsContractingDim)
|
||||
continue;
|
||||
|
@ -119,10 +119,10 @@ RankedTensorType castContractingDim(PatternRewriter &rewriter, Operation *op,
|
|||
}
|
||||
|
||||
// set result dimensions
|
||||
if (lhsResultDim < lhsShape.size() && lhsResultDim >= 0) {
|
||||
if (lhsResultDim < static_cast<int64_t>(lhsShape.size()) && lhsResultDim >= 0) {
|
||||
outShape.push_back(lhsShape[lhsResultDim]);
|
||||
}
|
||||
if (rhsResultDim < rhsShape.size() && rhsResultDim >= 0) {
|
||||
if (rhsResultDim < static_cast<int64_t>(rhsShape.size()) && rhsResultDim >= 0) {
|
||||
outShape.push_back(rhsShape[rhsResultDim]);
|
||||
}
|
||||
return RankedTensorType::get(outShape, lhsTy.getElementType());
|
||||
|
|
Loading…
Reference in New Issue