diff --git a/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp b/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp index 168518e3d..dd2f835ed 100644 --- a/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp +++ b/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp @@ -63,6 +63,29 @@ LogicalResult getListOperands(Value value, SmallVector &vals) { return success(); } +LogicalResult constructListFromLiteral(PatternRewriter &rewriter, + ValueTensorLiteralOp literalOp, + SmallVector &vals) { + // only supports splat ValueTensorLiterals for now. TODO: add support for + // small non-splat valuetensorliterals. + auto ty = dyn_cast(literalOp.getType()); + if (!ty || !ty.hasSizes()) + return failure(); + auto attr = dyn_cast_or_null(literalOp.getValue()); + if (!attr) + return failure(); + auto attrInt = dyn_cast(attr.getSplatValue()); + if (!attrInt) + return failure(); + IntegerType intty = cast(attrInt.getType()); + if (!intty.isSignedInteger()) + return failure(); + Value materializedVal = rewriter.create( + literalOp.getLoc(), attrInt.getSInt()); + vals.resize(vals.size() + ty.getSizes()[0], materializedVal); + return success(); +} + LogicalResult getListFromTensor(Value value, SmallVector &vals) { constexpr int64_t kMaxFold = 16; if (auto tensor = value.getDefiningOp()) @@ -351,6 +374,172 @@ public: }; } // namespace +namespace { +class PropagateAtenWhereSelfPattern : public OpRewritePattern { +public: + using OpRewritePattern::OpRewritePattern; + LogicalResult matchAndRewrite(AtenWhereSelfOp op, + PatternRewriter &rewriter) const override { + Value condition = op.getCondition(); + Value self = op.getSelf(); + Value other = op.getOther(); + auto conditionTy = dyn_cast(condition.getType()); + if (!conditionTy || !conditionTy.hasSizes() || + conditionTy.getSizes().size() != 1) + return rewriter.notifyMatchFailure(op, "bad condition type"); + auto selfTy = dyn_cast(self.getType()); + if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1) + return rewriter.notifyMatchFailure(op, "bad self type"); + auto otherTy = dyn_cast(other.getType()); + if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1) + return rewriter.notifyMatchFailure(op, "bad other type"); + int64_t conditionSize = selfTy.getSizes()[0]; + int64_t selfSize = selfTy.getSizes()[0]; + int64_t otherSize = otherTy.getSizes()[0]; + + if (selfSize != otherSize || selfSize != conditionSize) + return rewriter.notifyMatchFailure( + op, + "unimplemented: support for propogating with implicit broadcasting."); + + constexpr int64_t kMaxFold = 16; + if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold) + return rewriter.notifyMatchFailure(op, + "arguments are dynamic or too big"); + + SmallVector conditionList, selfList, otherList; + if (failed(getListFromTensor(condition, conditionList)) || + (int64_t)conditionList.size() != conditionSize) + return failure(); + + // If one of these tensors is a value tensor literal op, we will need to + // create constant ints in the IR to form a list. Before calling + // constructListFromLiteral, we must be certain that the conversion can no + // longer fail, otherwise we will cause an infinite loop of creating a + // constant and removing it. + LogicalResult selfFromList = getListFromTensor(self, selfList); + LogicalResult otherFromList = getListFromTensor(other, otherList); + + if (failed(selfFromList) && failed(otherFromList)) + return rewriter.notifyMatchFailure( + op, "At least one operand must succeed at constructing a list"); + + auto selfLiteral = self.getDefiningOp(); + auto otherLiteral = other.getDefiningOp(); + if (succeeded(selfFromList) && otherLiteral && + failed(constructListFromLiteral(rewriter, otherLiteral, otherList))) + return failure(); + if (succeeded(otherFromList) && selfLiteral && + failed(constructListFromLiteral(rewriter, selfLiteral, selfList))) + return failure(); + if ((int64_t)selfList.size() != selfSize || + (int64_t)otherList.size() != otherSize) + // this should only occur if we did not generate IR with + // constructListFromLiteral + return failure(); + + Location loc = op.getLoc(); + SmallVector whereVals; + auto rank0IntTy = rewriter.getType( + ArrayRef({}), selfTy.getDtype()); + auto rank0BoolTy = rewriter.getType( + ArrayRef({}), conditionTy.getDtype()); + for (uint64_t i = 0; i < selfList.size(); i++) { + Value rank0Cond = rewriter.create( + loc, rank0BoolTy, conditionList[i]); + Value rank0Self = rewriter.create( + loc, rank0IntTy, selfList[i]); + Value rank0Other = rewriter.create( + loc, rank0IntTy, otherList[i]); + Value rank0Where = rewriter.create( + loc, rank0IntTy, rank0Cond, rank0Self, rank0Other); + whereVals.push_back(rewriter.create( + loc, rewriter.getType(), rank0Where)); + } + Value list = rewriter.create( + op.getLoc(), Torch::ListType::get(whereVals[0].getType()), whereVals); + Value cstNone = rewriter.create(op.getLoc()); + Value cstFalse = rewriter.create( + op.getLoc(), rewriter.getBoolAttr(false)); + rewriter.replaceOpWithNewOp( + op, op.getType(), list, cstNone, cstNone, cstFalse); + return success(); + } +}; +} // namespace + +namespace { +class PropagateAtenEqTensorPattern : public OpRewritePattern { +public: + using OpRewritePattern::OpRewritePattern; + LogicalResult matchAndRewrite(AtenEqTensorOp op, + PatternRewriter &rewriter) const override { + Value self = op.getSelf(); + Value other = op.getOther(); + auto selfTy = dyn_cast(self.getType()); + if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1) + return rewriter.notifyMatchFailure(op, "bad self type"); + auto otherTy = dyn_cast(other.getType()); + if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1) + return rewriter.notifyMatchFailure(op, "bad other type"); + int64_t selfSize = selfTy.getSizes()[0]; + int64_t otherSize = otherTy.getSizes()[0]; + + if (selfSize != otherSize) + return rewriter.notifyMatchFailure( + op, + "unimplemented: support for propogating with implicit broadcasting."); + + constexpr int64_t kMaxFold = 16; + if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold || + otherSize == Torch::kUnknownSize || otherSize > kMaxFold) + return rewriter.notifyMatchFailure(op, + "self or other is dynamic or too big"); + + SmallVector selfList, otherList; + // If one of these tensors is a value tensor literal op, we will need to + // create constant ints in the IR to form a list. Before calling + // constructListFromLiteral, we must be certain that the conversion can no + // longer fail, otherwise we will cause an infinite loop of creating a + // constant and removing it. + LogicalResult selfFromList = getListFromTensor(self, selfList); + LogicalResult otherFromList = getListFromTensor(other, otherList); + + if (failed(selfFromList) && failed(otherFromList)) + return rewriter.notifyMatchFailure( + op, "At least one operand must succeed at constructing a list"); + + auto selfLiteral = self.getDefiningOp(); + auto otherLiteral = other.getDefiningOp(); + if (succeeded(selfFromList) && otherLiteral && + failed(constructListFromLiteral(rewriter, otherLiteral, otherList))) + return failure(); + if (succeeded(otherFromList) && selfLiteral && + failed(constructListFromLiteral(rewriter, selfLiteral, selfList))) + return failure(); + if ((int64_t)selfList.size() != selfSize || + (int64_t)otherList.size() != otherSize) + // this should only occur if we did not generate IR with + // constructListFromLiteral + return failure(); + + SmallVector eqVals; + for (uint64_t i = 0; i < selfList.size(); i++) { + eqVals.push_back( + rewriter.create(op.getLoc(), selfList[i], otherList[i])); + } + Value list = rewriter.create( + op.getLoc(), Torch::ListType::get(eqVals[0].getType()), eqVals); + Value cstNone = rewriter.create(op.getLoc()); + Value cstFalse = rewriter.create( + op.getLoc(), rewriter.getBoolAttr(false)); + rewriter.replaceOpWithNewOp( + op, op.getType(), list, cstNone, cstNone, cstFalse); + return success(); + } +}; +} // namespace + namespace { class PropagateAtenItemPattern : public OpRewritePattern { public: @@ -454,6 +643,26 @@ public: }; } // namespace +namespace { +class FoldAtenSqueezeDimPattern : public OpRewritePattern { +public: + using OpRewritePattern::OpRewritePattern; + LogicalResult matchAndRewrite(AtenSqueezeDimOp op, + PatternRewriter &rewriter) const override { + auto resultTy = cast(op.getType()); + if (!resultTy.hasSizes() || resultTy.getSizes().size() != 0) + return rewriter.notifyMatchFailure(op, "Unknown result shape"); + + if (auto atenFull = op.getSelf().getDefiningOp()) { + rewriter.replaceOpWithNewOp( + op, resultTy, atenFull.getFillValue()); + return success(); + } + return failure(); + } +}; +} // namespace + namespace { class FoldAtenWhereSelf : public OpRewritePattern { public: @@ -694,6 +903,8 @@ public: PropagateAtenSliceTensorPattern, FoldAtenTensorSplatPattern, FoldAtenSqueezePattern, FoldAtenUnsqueezePattern, FoldAtenWhereSelf, CanonicalizeAtenViewPattern, + PropagateAtenEqTensorPattern, PropagateAtenWhereSelfPattern, + FoldAtenSqueezeDimPattern, RemoveUnusedPattern, RemoveUnusedPattern, RemoveUnusedPattern, diff --git a/test/Dialect/Torch/scalarize-shapes.mlir b/test/Dialect/Torch/scalarize-shapes.mlir index 17f786a82..c86844996 100644 --- a/test/Dialect/Torch/scalarize-shapes.mlir +++ b/test/Dialect/Torch/scalarize-shapes.mlir @@ -160,3 +160,79 @@ func.func @unsqueeze_squeeze_combo(%arg0: !torch.vtensor<[?,?,16,64],f32>) -> !t %14 = torch.aten.item %13 : !torch.vtensor<[1],si64> -> !torch.int return %14 : !torch.int } + + +// ----- + +// CHECK-LABEL: @eq_tensor_and_where_self +func.func @eq_tensor_and_where_self(%arg0: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[4],si64> { + // CHECK-DAG: %[[false:.*]] = torch.constant.bool false + // CHECK-DAG: %[[none:.*]] = torch.constant.none + // CHECK-DAG: %[[I1:.*]] = torch.constant.int 1 + // CHECK-DAG: %[[I0:.*]] = torch.constant.int 0 + // CHECK-DAG: %[[DIM1:.*]] = torch.aten.size.int %arg0, %[[I1]] : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + // CHECK-DAG: %[[DIM0:.*]] = torch.aten.size.int %arg0, %[[I0]] : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + // CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[DIM0]], %[[I1]], %[[DIM1]], %[[DIM1]] : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list + // CHECK: %[[TENSOR:.*]] = torch.aten.tensor %[[LIST]], %[[none]], %[[none]], %[[false]] : !torch.list, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[4],si64> + // CHECK: return %[[TENSOR]] : !torch.vtensor<[4],si64> + %none = torch.constant.none + %0 = torch.vtensor.literal(dense<-1> : tensor<4xsi64>) : !torch.vtensor<[4],si64> + %1 = torch.vtensor.literal(dense<1> : tensor<4xsi64>) : !torch.vtensor<[4],si64> + %false = torch.constant.bool false + %int1 = torch.constant.int 1 + %int0 = torch.constant.int 0 + %2 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + %3 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + %4 = torch.prim.ListConstruct %3, %int1, %2, %2 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list + %5 = torch.aten.tensor %4, %none, %none, %false : !torch.list, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[4],si64> + %6 = torch.aten.eq.Tensor %5, %0 : !torch.vtensor<[4],si64>, !torch.vtensor<[4],si64> -> !torch.vtensor<[4],i1> + %7 = torch.aten.where.self %6, %1, %5 : !torch.vtensor<[4],i1>, !torch.vtensor<[4],si64>, !torch.vtensor<[4],si64> -> !torch.vtensor<[4],si64> + return %7 : !torch.vtensor<[4],si64> +} + + +// ----- + +// CHECK-LABEL: @eq_tensor_from_tensor_and_literal +func.func @eq_tensor_from_tensor_and_literal(%arg0: !torch.vtensor<[?,?],si64>) -> !torch.vtensor<[4],i1> { + // CHECK-DAG: %[[none:.*]] = torch.constant.none + // CHECK-DAG: %[[false:.*]] = torch.constant.bool false + // CHECK-DAG: %[[true:.*]] = torch.constant.bool true + // CHECK: %[[LIST:.*]] = torch.prim.ListConstruct %[[false]], %[[true]], %[[false]], %[[false]] : (!torch.bool, !torch.bool, !torch.bool, !torch.bool) -> !torch.list + // CHECK: %[[TENSOR:.*]] = torch.aten.tensor %[[LIST]], %[[none]], %[[none]], %[[false]] : !torch.list, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[4],i1> + // CHECK: return %[[TENSOR]] : !torch.vtensor<[4],i1> + %none = torch.constant.none + %0 = torch.vtensor.literal(dense<-1> : tensor<4xsi64>) : !torch.vtensor<[4],si64> + %1 = torch.vtensor.literal(dense<1> : tensor<4xsi64>) : !torch.vtensor<[4],si64> + %false = torch.constant.bool false + %int1 = torch.constant.int 1 + %int-1 = torch.constant.int -1 + %int0 = torch.constant.int 0 + %2 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + %3 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + %4 = torch.prim.ListConstruct %3, %int-1, %2, %2 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list + %5 = torch.aten.tensor %4, %none, %none, %false : !torch.list, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[4],si64> + %6 = torch.aten.eq.Tensor %5, %0 : !torch.vtensor<[4],si64>, !torch.vtensor<[4],si64> -> !torch.vtensor<[4],i1> + return %6 : !torch.vtensor<[4],i1> +} + + + +// ----- + +// CHECK-LABEL: @squeeze_dim_full_fold +func.func @squeeze_dim_full_fold(%arg0: !torch.vtensor<[?,?],si64>) -> !torch.int { + // CHECK: %[[I0:.*]] = torch.constant.int 0 + // CHECK: %[[SZE:.*]] = torch.aten.size.int %arg0, %[[I0]] : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + // CHECK: return %[[SZE]] : !torch.int + %int0 = torch.constant.int 0 + %int1 = torch.constant.int 1 + %none = torch.constant.none + %false = torch.constant.bool false + %51 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?],si64>, !torch.int -> !torch.int + %55 = torch.prim.ListConstruct %int1 : (!torch.int) -> !torch.list + %56 = torch.aten.full %55, %51, %none, %none, %none, %false : !torch.list, !torch.int, !torch.none, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[1],si64> + %57 = torch.aten.squeeze.dim %56, %int0 : !torch.vtensor<[1],si64>, !torch.int -> !torch.vtensor<[],si64> + %58 = torch.aten.item %57 : !torch.vtensor<[],si64> -> !torch.int + return %58 : !torch.int +}