mirror of https://github.com/llvm/torch-mlir
parent
c77f3b559a
commit
abef114c0c
|
@ -5019,6 +5019,54 @@ def Torch_AtenLogSigmoidOp : Torch_Op<"aten.log_sigmoid", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenHardshrinkOp : Torch_Op<"aten.hardshrink", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::hardshrink : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchScalarType:$lambd
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenHardshrinkOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenHardshrinkOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenSoftshrinkOp : Torch_Op<"aten.softshrink", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::softshrink : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchScalarType:$lambd
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenSoftshrinkOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenSoftshrinkOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenUnbindCopyIntOp : Torch_Op<"aten.unbind_copy.int", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -6514,6 +6514,14 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.hardshrink\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.softshrink\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.mish\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -9798,6 +9806,23 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %0#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.hardshrink\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number) -> !torch.int {\n"
|
||||
" %int4 = torch.constant.int 4\n"
|
||||
" %int11 = torch.constant.int 11\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = torch.aten.eq.int %0#1, %int11 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %2 = torch.prim.If %1 -> (!torch.int) {\n"
|
||||
" torch.prim.If.yield %int4 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %0#1 : !torch.int\n"
|
||||
" }\n"
|
||||
" return %2 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.softshrink\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.number) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.logit\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.optional<float>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
|
|
|
@ -1913,6 +1913,120 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
// SoftShrink(x, lambda) function:
|
||||
// Applies a shrinkage function where:
|
||||
// - If x > lambda, returns x - lambda
|
||||
// - If x < -lambda, returns x + lambda
|
||||
// - Otherwise, returns 0
|
||||
namespace {
|
||||
class DecomposeAtenSoftshrinkOp : public OpRewritePattern<AtenSoftshrinkOp> {
|
||||
public:
|
||||
using OpRewritePattern<AtenSoftshrinkOp>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenSoftshrinkOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
Value lambdValue = op.getLambd();
|
||||
|
||||
auto resTy = dyn_cast<ValueTensorType>(op.getType());
|
||||
if (!resTy || !resTy.hasDtype() || !resTy.hasSizes()) {
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"result should have dtype and size");
|
||||
}
|
||||
|
||||
double lambd;
|
||||
if (!matchPattern(lambdValue, m_TorchConstantFloat(&lambd))) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected lambd to be a constant float");
|
||||
}
|
||||
|
||||
Value zero =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
|
||||
Value neglambd = rewriter.create<Torch::ConstantFloatOp>(
|
||||
loc, rewriter.getF64FloatAttr(-lambd));
|
||||
Value poslambd = rewriter.create<Torch::ConstantFloatOp>(
|
||||
loc, rewriter.getF64FloatAttr(lambd));
|
||||
|
||||
Value constOneFloat =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
|
||||
|
||||
auto boolResType =
|
||||
resTy.getWithSizesAndDtype(resTy.getSizes(), rewriter.getI1Type());
|
||||
|
||||
Value posMask =
|
||||
rewriter.create<AtenGtScalarOp>(loc, boolResType, self, poslambd);
|
||||
Value negMask =
|
||||
rewriter.create<AtenLtScalarOp>(loc, boolResType, self, neglambd);
|
||||
|
||||
Value posValue = rewriter.create<AtenSubScalarOp>(loc, resTy, self,
|
||||
poslambd, constOneFloat);
|
||||
Value negValue = rewriter.create<AtenAddScalarOp>(loc, resTy, self,
|
||||
neglambd, constOneFloat);
|
||||
|
||||
Value result = rewriter.create<AtenWhereScalarOtherOp>(loc, resTy, posMask,
|
||||
posValue, zero);
|
||||
result =
|
||||
rewriter.create<AtenWhereSelfOp>(loc, resTy, negMask, negValue, result);
|
||||
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// HardShrink(x, lambda) function:
|
||||
// Applies a shrinkage function where:
|
||||
// - If x > lambda, returns x
|
||||
// - If x < -lambda, returns x
|
||||
// - Otherwise, returns 0
|
||||
namespace {
|
||||
class DecomposeAtenHardshrinkOp : public OpRewritePattern<AtenHardshrinkOp> {
|
||||
public:
|
||||
using OpRewritePattern<AtenHardshrinkOp>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenHardshrinkOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
Value lambdValue = op.getLambd();
|
||||
|
||||
auto resTy = dyn_cast<ValueTensorType>(op.getType());
|
||||
if (!resTy || !resTy.hasDtype() || !resTy.hasSizes()) {
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"result should have dtype and size");
|
||||
}
|
||||
|
||||
double lambd;
|
||||
if (!matchPattern(lambdValue, m_TorchConstantFloat(&lambd))) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected lambd to be a constant float");
|
||||
}
|
||||
|
||||
Value zero =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
|
||||
Value neglambd = rewriter.create<Torch::ConstantFloatOp>(
|
||||
loc, rewriter.getF64FloatAttr(-lambd));
|
||||
Value poslambd = rewriter.create<Torch::ConstantFloatOp>(
|
||||
loc, rewriter.getF64FloatAttr(lambd));
|
||||
|
||||
auto boolResType =
|
||||
resTy.getWithSizesAndDtype(resTy.getSizes(), rewriter.getI1Type());
|
||||
|
||||
Value posMask =
|
||||
rewriter.create<AtenGtScalarOp>(loc, boolResType, self, poslambd);
|
||||
Value negMask =
|
||||
rewriter.create<AtenLtScalarOp>(loc, boolResType, self, neglambd);
|
||||
|
||||
Value result = rewriter.create<AtenWhereScalarOtherOp>(loc, resTy, posMask,
|
||||
self, zero);
|
||||
result =
|
||||
rewriter.create<AtenWhereSelfOp>(loc, resTy, negMask, self, result);
|
||||
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// Decompose aten.matmul into: aten.mm and aten.bmm according to ranks.
|
||||
namespace {
|
||||
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
|
||||
|
@ -7664,6 +7778,8 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAten_LogSoftmaxOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLogSoftmaxIntOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLogSigmoidOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenHardshrinkOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenSoftshrinkOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyLikeOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<
|
||||
DecomposeConstantTensorAllocLikeOp<AtenOnesLikeOp, 1>>(patterns);
|
||||
|
|
|
@ -371,6 +371,8 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<Aten_LogSoftmaxOp>();
|
||||
target.addIllegalOp<AtenLogSoftmaxIntOp>();
|
||||
target.addIllegalOp<AtenLogSigmoidOp>();
|
||||
target.addIllegalOp<AtenHardshrinkOp>();
|
||||
target.addIllegalOp<AtenSoftshrinkOp>();
|
||||
target.addIllegalOp<AtenEmptyLikeOp>();
|
||||
target.addIllegalOp<AtenOnesLikeOp>();
|
||||
target.addIllegalOp<AtenZerosLikeOp>();
|
||||
|
|
|
@ -1438,6 +1438,8 @@ STABLEHLO_PASS_SET = {
|
|||
"ElementwiseTruncIntModule_basic",
|
||||
"ElementwiseTruncModule_basic",
|
||||
"ElementwiseLogSigmoidModule_basic",
|
||||
"ElementwiseHardshrinkStaticModule_basic",
|
||||
"ElementwiseSoftshrinkStaticModule_basic",
|
||||
}
|
||||
|
||||
STABLEHLO_CRASHING_SET = {
|
||||
|
@ -1667,6 +1669,10 @@ TOSA_PASS_SET = {
|
|||
"ElementwiseSeluModule_basic",
|
||||
"ElementwiseSigmoidModule_basic",
|
||||
"ElementwiseSignModule_basic",
|
||||
"ElementwiseHardshrinkModule_basic",
|
||||
"ElementwiseHardshrinkStaticModule_basic",
|
||||
"ElementwiseSoftshrinkModule_basic",
|
||||
"ElementwiseSoftshrinkStaticModule_basic",
|
||||
"ElementwiseSqrtIntModule_basic",
|
||||
"ElementwiseSqrtModule_basic",
|
||||
"ElementwiseSubScalarFloatModule_basic",
|
||||
|
|
|
@ -254,6 +254,12 @@ def aten〇log〡shape(self: List[int]) -> List[int]:
|
|||
def aten〇log_sigmoid〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇hardshrink〡shape(self: List[int], lambd: float = 0.5) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇softshrink〡shape(self: List[int], lambd: float = 0.5) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇mish〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -2098,6 +2104,18 @@ def aten〇log_sigmoid〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
|||
assert not self_dtype == torch.bool
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, lambd=0.5))
|
||||
def aten〇hardshrink〡dtype(self_rank_dtype: Tuple[int, int], lambd: Union[int, float, complex] = 0.5) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
if self_dtype == torch.bool:
|
||||
return torch.int64
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, lambd=0.5))
|
||||
def aten〇softshrink〡dtype(self_rank_dtype: Tuple[int, int], lambd: Union[int, float, complex] = 0.5) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇logit〡dtype(self_rank_dtype: Tuple[int, int], eps: Optional[float] = None) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
|
|
|
@ -480,6 +480,8 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::isclose : (Tensor, Tensor, float, float, bool) -> (Tensor)")
|
||||
emit("aten::glu : (Tensor, int) -> (Tensor)")
|
||||
emit("aten::log_sigmoid : (Tensor) -> (Tensor)")
|
||||
emit("aten::hardshrink : (Tensor, Scalar) -> (Tensor)")
|
||||
emit("aten::softshrink : (Tensor, Scalar) -> (Tensor)")
|
||||
|
||||
# Ops with dynamic number of outputs
|
||||
emit("aten::unbind_copy.int : (Tensor, int) -> (Tensor[])")
|
||||
|
|
|
@ -2205,6 +2205,98 @@ def ElementwiseLogSigmoidModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSoftshrinkModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.softshrink(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSoftshrinkModule())
|
||||
def ElementwiseSoftshrinkModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSoftshrinkStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([4, 5, 6], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.softshrink(a, 2.0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSoftshrinkStaticModule())
|
||||
def ElementwiseSoftshrinkStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4, 5, 6))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseHardshrinkModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1, -1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.hardshrink(a, 1.0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseHardshrinkModule())
|
||||
def ElementwiseHardshrinkModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4, 5))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseHardshrinkStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([4, 5, 6], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.ops.aten.hardshrink(a, 2.0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseHardshrinkStaticModule())
|
||||
def ElementwiseHardshrinkStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4, 5, 6))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseErfModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue