mirror of https://github.com/llvm/torch-mlir
[ONNX] Fix AveragePool attributes support (#3235)
Issues was found here https://github.com/nod-ai/SHARK-Turbine/issues/643 - [ONNX] Fix padding attributes for onnx.AveragePool - [Linalg] Add countIncludePad false support for AtenAvgPool1/2dOp - [Linalg] Add an avg_pool2d countIncludePad False e2e tests - [Linalg] Fix conflict with AtenAvgPool3dOp - [Linalg] Fix e2e crash with AtenAvgPool1dOp - [Linalg] Add dynamic dim support for AtenAvgPool2dOp - [Linalg] Fix AvgPool2dDivisorOverrideModule crashpull/3455/head
parent
41d04a8995
commit
ae6f5e8251
|
@ -441,9 +441,17 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
|
|||
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
||||
}
|
||||
for (int64_t i : padding) {
|
||||
// Onnx pads format: [x1_begin, x2_begin…x1_end, x2_end,…]
|
||||
// Pytorch pads format: [x1, x2,...] or [x], assume begin==end for all
|
||||
// axes x.
|
||||
int64_t paddingSizeHalf = padding.size() / 2;
|
||||
for (int64_t i = 0; i < paddingSizeHalf; ++i) {
|
||||
// Check if onnx padding attribute is symmetric.
|
||||
if (padding[i] != padding[i + paddingSizeHalf])
|
||||
return rewriter.notifyMatchFailure(
|
||||
binder.op, "onnx padding attribute is not symmetric");
|
||||
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
||||
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
|
||||
}
|
||||
for (int64_t i : strides) {
|
||||
cstStrides.push_back(rewriter.create<Torch::ConstantIntOp>(
|
||||
|
|
|
@ -619,13 +619,6 @@ public:
|
|||
return rewriter.notifyMatchFailure(
|
||||
op, "count_include_pad must be a constant");
|
||||
|
||||
// If the padding is zero then there is no padding to include.
|
||||
if (!countIncludePad &&
|
||||
!llvm::all_of(paddingInts, [](int64_t p) { return p == 0; })) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "unimplemented: count_include_pad is expected to be true");
|
||||
}
|
||||
|
||||
// `sumPool` contains the result of sumpool operation over the input.
|
||||
Value sumPool, paddedInput;
|
||||
SmallVector<Value, Dim + 2> outTensorShape;
|
||||
|
@ -635,9 +628,142 @@ public:
|
|||
paddingInts, dilationInts, rewriter.getZeroAttr(inputElementType),
|
||||
outTensorShape, paddedInput, sumPool)))
|
||||
return rewriter.notifyMatchFailure(op, "unable to compute sumpool");
|
||||
// }
|
||||
|
||||
Value divisor = kernelSizeIntValues[0];
|
||||
// Compute the average of sumPool.
|
||||
Value outputTensor = rewriter.create<tensor::EmptyOp>(
|
||||
loc, getAsOpFoldResult(outTensorShape), resultElementType);
|
||||
SmallVector<AffineMap> indexingMapsAvg(
|
||||
2, rewriter.getMultiDimIdentityMap(Dim + 2));
|
||||
SmallVector<utils::IteratorType> iteratorTypesAvg(
|
||||
Dim + 2, utils::IteratorType::parallel);
|
||||
Value avgPool;
|
||||
Value divisor;
|
||||
// Case1: AtenAvgPool1d/2dOp with countIncludePad=false support.
|
||||
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
||||
auto selfType = cast<RankedTensorType>(self.getType());
|
||||
const int64_t selfRank = selfType.getRank();
|
||||
int64_t wDim = toPositiveDim(-1, selfRank);
|
||||
int64_t hDim = toPositiveDim(-2, selfRank);
|
||||
Value inputHeight = getDimOp(rewriter, loc, self, hDim);
|
||||
Value inputWidth = getDimOp(rewriter, loc, self, wDim);
|
||||
RankedTensorType sumPoolType = cast<RankedTensorType>(sumPool.getType());
|
||||
const int64_t rank = sumPoolType.getRank();
|
||||
int dimH = toPositiveDim(-2, rank);
|
||||
int dimW = toPositiveDim(-1, rank);
|
||||
avgPool =
|
||||
rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, outputTensor.getType(), sumPool, outputTensor,
|
||||
/*indexingMaps=*/indexingMapsAvg,
|
||||
/*iteratorTypes=*/iteratorTypesAvg,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
// The algorithm for computing the divisor with
|
||||
// count_include_pad is manily based on pytorch
|
||||
// implementation. The following code is comment
|
||||
// with pytorch code.
|
||||
// https://github.com/pytorch/pytorch/blob/4a6dfbe4806b361c43210dfd56db64c4097c66bb/aten/src/ATen/native/cpu/AvgPoolKernel.cpp#L78
|
||||
Value indexOh =
|
||||
b.create<linalg::IndexOp>(loc, /*value=*/dimH);
|
||||
Value oh = castIndexToInt64(b, loc, indexOh);
|
||||
Value indexOw =
|
||||
b.create<linalg::IndexOp>(loc, /*value=*/dimW);
|
||||
Value ow = castIndexToInt64(b, loc, indexOw);
|
||||
|
||||
// int64_t ih0 = oh * dH - padH;
|
||||
Value dH = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(strideInts[0]));
|
||||
Value padH = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(paddingInts[0]));
|
||||
Value ohDH = b.create<arith::MulIOp>(loc, oh, dH);
|
||||
Value ih0 = b.create<arith::SubIOp>(loc, ohDH, padH);
|
||||
// int64_t iw0 = ow * dW - padW;
|
||||
Value dW = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(strideInts[1]));
|
||||
Value padW = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(paddingInts[1]));
|
||||
Value owDW = b.create<arith::MulIOp>(loc, ow, dW);
|
||||
Value iw0 = b.create<arith::SubIOp>(loc, owDW, padW);
|
||||
// int64_t ih1 = std::min(ih0 + kH, input_height + padH);
|
||||
Value ih = castIndexToInt64(b, loc, inputHeight);
|
||||
Value ih0KH = b.create<arith::AddIOp>(
|
||||
loc, ih0, kernelSizeIntValues[0]);
|
||||
Value ihPadH = b.create<arith::AddIOp>(loc, ih, padH);
|
||||
Value ih1 = b.create<arith::MinSIOp>(loc, ih0KH, ihPadH);
|
||||
// int64_t iw1 = std::min(iw0 + kW, input_width + padW);
|
||||
Value iw = castIndexToInt64(b, loc, inputWidth);
|
||||
Value iw0KW = b.create<arith::AddIOp>(
|
||||
loc, iw0, kernelSizeIntValues[1]);
|
||||
Value iwPadW = b.create<arith::AddIOp>(loc, iw, padW);
|
||||
Value iw1 = b.create<arith::MinSIOp>(loc, iw0KW, iwPadW);
|
||||
// int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
|
||||
Value ih1Ih0 = b.create<arith::SubIOp>(loc, ih1, ih0);
|
||||
Value iw1Iw0 = b.create<arith::SubIOp>(loc, iw1, iw0);
|
||||
Value poolSize =
|
||||
b.create<arith::MulIOp>(loc, ih1Ih0, iw1Iw0);
|
||||
// ih0 = std::max(ih0, 0);
|
||||
Value cstZero = rewriter.create<arith::ConstantOp>(
|
||||
loc, rewriter.getI64IntegerAttr(0));
|
||||
Value ih0Clamped =
|
||||
b.create<arith::MaxSIOp>(loc, ih0, cstZero);
|
||||
// iw0 = std::max(iw0, 0);
|
||||
Value iw0Clamped =
|
||||
b.create<arith::MaxSIOp>(loc, iw0, cstZero);
|
||||
// ih1 = std::min(ih1, input_height);
|
||||
Value ih1Clamped = b.create<arith::MinSIOp>(loc, ih1, ih);
|
||||
// iw1 = std::min(iw1, input_width);
|
||||
Value iw1Clamped = b.create<arith::MinSIOp>(loc, iw1, iw);
|
||||
// if (divisor_override.has_value()) {
|
||||
// divisor = divisor_override.value();
|
||||
// } else {
|
||||
// if(count_include_pad) {
|
||||
// divisor = pool_size;
|
||||
// } else {
|
||||
// divisor = (ih1 - ih0) * (iw1 - iw0);
|
||||
// }
|
||||
// }
|
||||
if (countIncludePad) {
|
||||
divisor = convertScalarToDtype(b, loc, poolSize,
|
||||
resultElementType);
|
||||
} else {
|
||||
Value ih1_ih0 =
|
||||
b.create<arith::SubIOp>(loc, ih1Clamped, ih0Clamped);
|
||||
Value iw1_iw0 =
|
||||
b.create<arith::SubIOp>(loc, iw1Clamped, iw0Clamped);
|
||||
divisor = b.create<arith::MulIOp>(loc, ih1_ih0, iw1_iw0);
|
||||
}
|
||||
// AtenAvgPool2/3dOp has an optional divisor_override
|
||||
// attribute while AtenAvgPool1dOp does not.
|
||||
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
||||
if (!isa<Torch::NoneType>(
|
||||
op.getDivisorOverride().getType()))
|
||||
divisor = adaptor.getDivisorOverride();
|
||||
}
|
||||
|
||||
divisor = convertScalarToDtype(b, loc, divisor,
|
||||
resultElementType);
|
||||
Value avg;
|
||||
if (isa<mlir::IntegerType>(resultElementType))
|
||||
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
|
||||
else if (isa<mlir::FloatType>(resultElementType))
|
||||
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
|
||||
b.create<linalg::YieldOp>(loc, avg);
|
||||
})
|
||||
.getResult(0);
|
||||
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
|
||||
return success();
|
||||
}
|
||||
|
||||
// TODO: Add support for count_include_pad equal to `False` in
|
||||
// AtenAvgPool1/3dOp.
|
||||
if (!countIncludePad &&
|
||||
!llvm::all_of(paddingInts, [](int64_t p) { return p == 0; })) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "unimplemented: count_include_pad is expected to be true for "
|
||||
"AtenAvgPool3dOp");
|
||||
}
|
||||
|
||||
// Case2: AtenAvgPool1/3dOp without count_include_pad equal to `False`.
|
||||
divisor = kernelSizeIntValues[0];
|
||||
for (uint32_t i = 1; i < kernelSizeIntValues.size(); i++) {
|
||||
divisor =
|
||||
rewriter.create<arith::MulIOp>(loc, divisor, kernelSizeIntValues[i]);
|
||||
|
@ -648,29 +774,20 @@ public:
|
|||
: adaptor.getDivisorOverride();
|
||||
}
|
||||
divisor = convertScalarToDtype(rewriter, loc, divisor, resultElementType);
|
||||
|
||||
Value outputTensor = rewriter.create<tensor::EmptyOp>(
|
||||
loc, getAsOpFoldResult(outTensorShape), resultElementType);
|
||||
SmallVector<AffineMap> indexingMapsAvg(
|
||||
2, rewriter.getMultiDimIdentityMap(Dim + 2));
|
||||
SmallVector<utils::IteratorType> iteratorTypesAvg(
|
||||
Dim + 2, utils::IteratorType::parallel);
|
||||
Value avgPool =
|
||||
rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, outputTensor.getType(), sumPool, outputTensor,
|
||||
/*indexingMaps=*/indexingMapsAvg,
|
||||
/*iteratorTypes=*/iteratorTypesAvg,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
Value avg;
|
||||
if (isa<mlir::IntegerType>(resultElementType))
|
||||
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
|
||||
else if (isa<mlir::FloatType>(resultElementType))
|
||||
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
|
||||
b.create<linalg::YieldOp>(loc, avg);
|
||||
})
|
||||
.getResult(0);
|
||||
|
||||
avgPool = rewriter
|
||||
.create<linalg::GenericOp>(
|
||||
loc, outputTensor.getType(), sumPool, outputTensor,
|
||||
/*indexingMaps=*/indexingMapsAvg,
|
||||
/*iteratorTypes=*/iteratorTypesAvg,
|
||||
[&](OpBuilder &b, Location loc, ValueRange args) {
|
||||
Value avg;
|
||||
if (isa<mlir::IntegerType>(resultElementType))
|
||||
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
|
||||
else if (isa<mlir::FloatType>(resultElementType))
|
||||
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
|
||||
b.create<linalg::YieldOp>(loc, avg);
|
||||
})
|
||||
.getResult(0);
|
||||
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
|
||||
return success();
|
||||
}
|
||||
|
|
|
@ -888,6 +888,7 @@ STABLEHLO_PASS_SET = {
|
|||
"Aten_CastLongModule_basic",
|
||||
"AvgPool1dStaticModule_basic",
|
||||
"AvgPool2dStaticModule_basic",
|
||||
"AvgPool2dCountIncludePadFalseStaticModule_basic",
|
||||
"AvgPool3dStaticModule_basic",
|
||||
"BaddbmmBroadcast1DInputModule_basic",
|
||||
"BaddbmmBroadcast2DInputModule_basic",
|
||||
|
@ -1479,6 +1480,7 @@ STABLEHLO_CRASHING_SET = set()
|
|||
# Write the TOSA set as a "passing" set as it is very early in development
|
||||
# and very few tests work yet.
|
||||
TOSA_PASS_SET = {
|
||||
"AvgPool2dCountIncludePadFalseStaticModule_basic",
|
||||
"TensorSplitSections_GetItemModule_basic",
|
||||
"TensorSplitSections_ListUnpackModule_basic",
|
||||
"AtenLinear2D_basic",
|
||||
|
@ -1950,6 +1952,7 @@ MAKE_FX_TOSA_PASS_SET = (
|
|||
TOSA_PASS_SET
|
||||
| {
|
||||
### Tests additionally passing in make_fx_tosa
|
||||
"AvgPool2dCountIncludePadFalseStaticModule_basic",
|
||||
"AtenLinear1D_basic",
|
||||
"AtenLinearMatVec_basic",
|
||||
"AtenLinearVecMatBias_basic",
|
||||
|
|
|
@ -1017,6 +1017,35 @@ def AvgPool2dStaticModule_basic(module, tu: TestUtils):
|
|||
module.forward(tu.rand(2, 2, 10, 20, low=-1))
|
||||
|
||||
|
||||
class AvgPool2dCountIncludePadFalseStaticModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.ap2d = torch.nn.AvgPool2d(
|
||||
kernel_size=[3, 3],
|
||||
stride=[1, 1],
|
||||
padding=[1, 1],
|
||||
ceil_mode=False,
|
||||
count_include_pad=False,
|
||||
divisor_override=None,
|
||||
)
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([32, 384, 25, 25], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.ap2d(x)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AvgPool2dCountIncludePadFalseStaticModule())
|
||||
def AvgPool2dCountIncludePadFalseStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(32, 384, 25, 25, low=-1))
|
||||
|
||||
|
||||
class AvgPool2dDivisorOverrideModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue