[MLIR][TORCH] Move common helper functions to Utils.cpp

This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
pull/649/head
Vivek Khandelwal 2022-03-02 22:12:25 +05:30
parent bf463d1f36
commit b2952b12dd
5 changed files with 370 additions and 259 deletions

View File

@ -0,0 +1,84 @@
//===------------------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#ifndef TORCHMLIR_CONVERSION_UTILS_H
#define TORCHMLIR_CONVERSION_UTILS_H
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace torch {
namespace Torch {
LogicalResult verifyLinalgCompatibleTypes(Operation *op,
PatternRewriter &rewriter);
LogicalResult checkNotNone(PatternRewriter &rewriter, Operation *op, Value v);
Value toPositiveDimDynamic(OpBuilder &b, Location loc, Value dim,
Value inputRank);
void assertIsValidDim(OpBuilder &b, Location loc, Value dim, Value inputRank);
bool isConstantIntListMatching(Value value, SmallVectorImpl<int64_t> &expects);
void checkDimEqualHelper(OpBuilder &b, Location loc, Value lhsDim,
Value rhsDim);
// Creates a tensor with required `sizes` and `elemTy` and fills it with
// initElem.
Value createInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy, Value initElem);
Value castIntToIndex(OpBuilder &b, Location loc, Value v);
Value castIndexToInt(OpBuilder &b, Location loc, Value idx);
Value getDimOp(OpBuilder &b, Location loc, Value v, int dim);
SmallVector<Value> getTensorSizesUntilDim(OpBuilder &b, Location loc,
Value tensor, int dim);
SmallVector<Value> getTensorSizes(OpBuilder &b, Location loc, Value tensor);
Value getTensorSize(OpBuilder &b, Location loc, Value tensor);
Value createZeroInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy);
// Creates a constant of type `elemType` with value `val`.
Value getConstant(OpBuilder &b, Location loc, int64_t val, Type elemType);
SmallVector<Value> getAsConstantIntValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints);
SmallVector<Value> getAsConstantIndexValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints);
// This is a temporary solution to deal with types that are not fully supported
// like list, dict. For those container tyes, this helper can be used to
// convert their elements to valid target type.
// TODO: remove this when list gets full support.
SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
TypeConverter *converter,
SmallVectorImpl<Value> &vs);
// Convert a scalar value to the target type. The scalar value can be an element
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
// should be converted builtin types.
Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar,
Type dtype);
} // namespace Torch
} // namespace torch
} // namespace mlir
#endif // TORCHMLIR_CONVERSION_UTILS_H

View File

@ -2,6 +2,7 @@ add_subdirectory(TorchToLinalg)
add_subdirectory(TorchToSCF)
add_subdirectory(TorchToStd)
add_subdirectory(TorchToTosa)
add_subdirectory(Utils)
# TODO: Automate this with add_torch_mlir_conversion_library.
#get_property(torch_mlir_conversion_libs GLOBAL PROPERTY TORCH_MLIR_CONVERSION_LIBS)
@ -20,5 +21,6 @@ add_mlir_library(TorchMLIRConversionPasses
TorchMLIRTorchToSCF
TorchMLIRTorchToStd
TorchMLIRTorchToTosa
TorchMLIRConversionUtils
#${torch_mlir_conversion_libs}
)

View File

@ -25,6 +25,7 @@
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
@ -57,117 +58,6 @@ using namespace mlir::torch::torch_upstream; // For ScalarType and type
// that these patterns become mostly mechanical associations of
// "aten.foo -> linalg.foo".
static LogicalResult verifyLinalgCompatibleTypes(Operation *op,
PatternRewriter &rewriter) {
// Check the value tensor is ranked as expected by Linalg.
// TODO: Remove this check but use a separate verification pass to verify the
// invariants expected by later passes.
auto isValidLinalgType = [](Type type) {
auto tensor = type.dyn_cast<ValueTensorType>();
return !tensor ||
tensor.toBuiltinTensor().dyn_cast_or_null<RankedTensorType>();
};
bool valid = llvm::all_of(op->getOperandTypes(), isValidLinalgType) &&
llvm::all_of(op->getResultTypes(), isValidLinalgType);
if (!valid)
return rewriter.notifyMatchFailure(op, "type cannot be lowered to linalg");
return success();
}
static LogicalResult checkNotNone(PatternRewriter &rewriter, Operation *op,
Value v) {
Type type = v.getType();
if (type.isa<OptionalType>() || type.isa<Torch::NoneType>() ||
type.isa<mlir::NoneType>())
return rewriter.notifyMatchFailure(op, "unimplemented None type arg");
return success();
}
// Generate IR: dim = dim >= 0 ? dim : dim + inputRank
static Value toPositiveDimDynamic(OpBuilder &b, Location loc, Value dim,
Value inputRank) {
assert(dim.getType().isa<IntegerType>() &&
"dim arg of toPositiveDim must be integer type");
Value dimAddInputRank = b.create<arith::AddIOp>(loc, dim, inputRank);
Value cst0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
Value predDimGEZero =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
Value dimInt =
b.create<arith::SelectOp>(loc, predDimGEZero, dim, dimAddInputRank);
return dimInt;
}
// Generate IR: assert(dim >= 0 && dim < inputRank)
static void assertIsValidDim(OpBuilder &b, Location loc, Value dim,
Value inputRank) {
assert(dim.getType().isa<IntegerType>() &&
"dim arg of assertIsValidDim must be integer type");
Value cst0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
Value predGEZero =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
b.create<cf::AssertOp>(
loc, predGEZero, b.getStringAttr("dim must be greater or equal to zero"));
Value predLTInputRank =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, dim, inputRank);
b.create<cf::AssertOp>(loc, predLTInputRank,
b.getStringAttr("dim must be smaller than inputRank"));
}
// Hack to deal with the Torch list type arguments which is not supported end
// to end. Constant values can be be extracted directly and non constant
// list values are not supported.
// TODO: loose this constraint when properly support list type
static bool isConstantIntListMatching(Value value,
SmallVectorImpl<int64_t> &expects) {
SmallVector<int64_t> intValues;
if (!matchPattern(value, m_TorchConstantIntList(intValues)))
return false;
if (intValues.size() != expects.size())
return false;
for (auto it : llvm::zip(intValues, expects)) {
if (std::get<0>(it) != std::get<1>(it))
return false;
}
return true;
}
static Value castIntToIndex(OpBuilder &b, Location loc, Value v) {
assert(v.getType().isa<IntegerType>() && "must be called with integer type");
return b.create<arith::IndexCastOp>(loc, b.getIndexType(), v);
}
static Value castIndexToInt(OpBuilder &b, Location loc, Value idx) {
assert(idx.getType().isa<IndexType>() && "must be called with integer type");
return b.create<arith::IndexCastOp>(loc, b.getI64Type(), idx);
}
static Value getDimOp(OpBuilder &b, Location loc, Value v, int dim) {
return b.createOrFold<tensor::DimOp>(loc, v, dim);
}
static void checkDimEqualHelper(OpBuilder &b, Location loc, Value lhsDim,
Value rhsDim) {
Type lhsType = lhsDim.getType();
Type rhsType = rhsDim.getType();
auto checkIntOrIndex = [](Type type) {
assert(type.isa<IntegerType>() ||
type.isa<IndexType>() && "must be either integer or index type");
};
checkIntOrIndex(lhsType);
checkIntOrIndex(rhsType);
Value lhsDimInt = lhsType.isIndex() ? castIndexToInt(b, loc, lhsDim) : lhsDim;
Value rhsDimInt = rhsType.isIndex() ? castIndexToInt(b, loc, rhsDim) : rhsDim;
Value contractingDimEqual = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsDimInt, rhsDimInt);
b.create<cf::AssertOp>(loc, contractingDimEqual,
b.getStringAttr("mismatching contracting dimension"));
}
template <arith::CmpFPredicate fpred, arith::CmpIPredicate iupred,
arith::CmpIPredicate ispred>
static Value createComparisonTemplate(OpBuilder &b, Location loc, Type type,
@ -199,64 +89,6 @@ static Value createLessThan(OpBuilder &b, Location loc, Type elementalType,
b, loc, elementalType, lhs, rhs);
}
static SmallVector<Value> getTensorSizesUntilDim(OpBuilder &b, Location loc,
Value tensor, int dim) {
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
assert(dim < type.getRank() &&
"The given dim must be smaller than tensor rank");
(void)type;
SmallVector<Value> sizes;
for (int i = 0; i <= dim; i++)
sizes.push_back(getDimOp(b, loc, tensor, i));
return sizes;
}
static SmallVector<Value> getTensorSizes(OpBuilder &b, Location loc,
Value tensor) {
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
return getTensorSizesUntilDim(b, loc, tensor, type.getRank() - 1);
}
static Value getTensorSize(OpBuilder &b, Location loc, Value tensor) {
SmallVector<Value> sizes(getTensorSizes(b, loc, tensor));
Value productResult = b.create<arith::ConstantOp>(loc, b.getIndexAttr(1));
for (Value size : sizes)
productResult = b.create<arith::MulIOp>(loc, productResult, size);
return castIndexToInt(b, loc, productResult);
}
static Value createZeroInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy) {
Value initTensor = b.create<linalg::InitTensorOp>(loc, sizes, elemTy);
RankedTensorType type = initTensor.getType().cast<RankedTensorType>();
Value c0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(type.getElementType()));
return b.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
}
// Creates a tensor with required `sizes` and `elemTy` and fills it with
// initElem.
static Value createInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy, Value initElem) {
Value initTensor = b.create<linalg::InitTensorOp>(loc, sizes, elemTy);
return b.create<linalg::FillOp>(loc, initElem, initTensor).getResult(0);
}
// Creates a constant of type `elemType` with value `val`.
static Value getConstant(OpBuilder &b, Location loc, int64_t val,
Type elemType) {
Attribute attr = {};
if (elemType.isa<mlir::FloatType>())
attr = b.getFloatAttr(elemType, val);
if (elemType.isa<mlir::IndexType>())
attr = b.getIndexAttr(val);
if (elemType.isa<mlir::IntegerType>())
attr = b.getIntegerAttr(
elemType, APInt(elemType.cast<IntegerType>().getWidth(), val));
if (!attr)
return nullptr;
return b.create<arith::ConstantOp>(loc, elemType, attr);
}
// Helper function to caculate the output tensor dims for convolution-like ops.
// Along each dim:
// dim_out =
@ -285,42 +117,12 @@ static Value getOutputDimForConvOps(OpBuilder &b, Location loc, Value in,
return castIntToIndex(b, loc, out);
}
static SmallVector<Value>
getAsConstantIntValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints) {
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
return b.create<arith::ConstantOp>(loc,
b.getIntegerAttr(b.getI64Type(), val));
}));
}
static SmallVector<Value>
getAsConstantIndexValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints) {
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
return b.create<arith::ConstantOp>(loc, b.getIndexAttr(val));
}));
}
static SmallVector<OpFoldResult>
getAsOpFoldResult(OpBuilder &b, Location loc, SmallVectorImpl<int64_t> &ints) {
return llvm::to_vector<4>(llvm::map_range(
ints, [&](int64_t val) -> OpFoldResult { return b.getIndexAttr(val); }));
}
// This is a temporary solution to deal with types that are not fully supported
// like list, dict. For those container tyes, this helper can be used to
// convert their elements to valid target type.
// TODO: remove this when list gets full support.
static SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
TypeConverter *converter,
SmallVectorImpl<Value> &vs) {
return llvm::to_vector<4>(llvm::map_range(vs, [&](Value v) {
return converter->materializeTargetConversion(
b, loc, converter->convertType(v.getType()), v);
}));
}
// Helper function to get the padding tensor given the padding int values.
static Value getPaddedTensor(Operation *op, OpBuilder &b, Value &input,
SmallVectorImpl<int64_t> &lowPaddingInts,
@ -377,66 +179,6 @@ static Value buildUnitNormalCdf(OpBuilder &b, Location &loc, Value x) {
return buildNormalCdf(b, loc, x, zero, one);
}
// Convert a scalar value to the target type. The scalar value can be an element
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
// should be converted builtin types.
static Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar,
Type dtype) {
Type scalarType = scalar.getType();
if (scalarType == dtype)
return scalar;
// TODO: For the byte(ui8) or char(i8) case, we need the unconverted dtype to
// be able to know if we need signed or unsigned conversion.
auto isByteOrChar = [](Type type) {
if (auto integerTy = type.dyn_cast<mlir::IntegerType>()) {
return integerTy.getWidth() == 8;
}
return false;
};
if (isByteOrChar(scalarType) || isByteOrChar(dtype) ||
dtype.isSignlessInteger(1)) {
// TODO: Handle to-boolean conversion(from-boolean conversion is handled).
mlir::emitError(loc)
<< "unsupported byte, char or bool type for convertScalarToDtype "
<< scalarType << "(scalar type) -> " << dtype << "(dtype)";
return nullptr;
}
if (auto dtypeFloat = dtype.dyn_cast<mlir::FloatType>()) {
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>()) {
if (scalarFloat.getWidth() > dtypeFloat.getWidth())
return b.create<arith::TruncFOp>(loc, dtype, scalar);
// Only scalarFloat width < dtypeFloat width can reach here.
return b.create<arith::ExtFOp>(loc, dtype, scalar);
}
assert(scalarType.isa<mlir::IntegerType>());
if (scalarType.isSignlessInteger(1))
return b.create<arith::UIToFPOp>(loc, dtype, scalar);
// It's safe to use SIToFPOp because ui8/si8 are the only ones where
// unsigned handling is needed, and we checked for that case above.
return b.create<arith::SIToFPOp>(loc, dtype, scalar);
}
if (auto dtypeInteger = dtype.dyn_cast<mlir::IntegerType>()) {
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>())
return b.create<arith::FPToSIOp>(loc, dtype, scalar);
assert(scalarType.isa<mlir::IntegerType>());
auto scalarInteger = scalarType.cast<mlir::IntegerType>();
if (scalarInteger.getWidth() > dtypeInteger.getWidth())
return b.create<arith::TruncIOp>(loc, dtype, scalar);
if (scalarType.isSignlessInteger(1))
return b.create<arith::ExtUIOp>(loc, dtype, scalar);
// Only scalarInteger width < dtypeInteger width can reach here.
// It's safe to use ExtSIOp here because ui8/si8 are the only ones where
// unsigned handling is needed, and we checked for that case above.
return b.create<arith::ExtSIOp>(loc, dtype, scalar);
}
llvm_unreachable("convertScalarToDtype should handle all the types");
}
// Create a reduction of `tensorOperand`, reducing along the dimensions
// in `dimSet`. If `keepDim` is true, the output tensor is the same
// rank as the `tensorOperand` and reduced dimensions are set to size 1.

View File

@ -0,0 +1,6 @@
add_mlir_conversion_library(TorchMLIRConversionUtils
Utils.cpp
ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/torch-mlir/Conversion/Utils
)

View File

@ -0,0 +1,277 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
namespace mlir {
namespace torch {
namespace Torch {
LogicalResult verifyLinalgCompatibleTypes(Operation *op,
PatternRewriter &rewriter) {
// Check the value tensor is ranked as expected by Linalg.
// TODO: Remove this check but use a separate verification pass to verify the
// invariants expected by later passes.
auto isValidLinalgType = [](Type type) {
auto tensor = type.dyn_cast<ValueTensorType>();
return !tensor ||
tensor.toBuiltinTensor().dyn_cast_or_null<RankedTensorType>();
};
bool valid = llvm::all_of(op->getOperandTypes(), isValidLinalgType) &&
llvm::all_of(op->getResultTypes(), isValidLinalgType);
if (!valid)
return rewriter.notifyMatchFailure(op, "type cannot be lowered to linalg");
return success();
}
LogicalResult checkNotNone(PatternRewriter &rewriter, Operation *op, Value v) {
Type type = v.getType();
if (type.isa<OptionalType>() || type.isa<Torch::NoneType>() ||
type.isa<mlir::NoneType>())
return rewriter.notifyMatchFailure(op, "unimplemented None type arg");
return success();
}
// Generate IR: dim = dim >= 0 ? dim : dim + inputRank
Value toPositiveDimDynamic(OpBuilder &b, Location loc, Value dim,
Value inputRank) {
assert(dim.getType().isa<IntegerType>() &&
"dim arg of toPositiveDim must be integer type");
Value dimAddInputRank = b.create<arith::AddIOp>(loc, dim, inputRank);
Value cst0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
Value predDimGEZero =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
Value dimInt =
b.create<arith::SelectOp>(loc, predDimGEZero, dim, dimAddInputRank);
return dimInt;
}
// Generate IR: assert(dim >= 0 && dim < inputRank)
void assertIsValidDim(OpBuilder &b, Location loc, Value dim, Value inputRank) {
assert(dim.getType().isa<IntegerType>() &&
"dim arg of assertIsValidDim must be integer type");
Value cst0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(inputRank.getType()));
Value predGEZero =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge, dim, cst0);
b.create<cf::AssertOp>(
loc, predGEZero, b.getStringAttr("dim must be greater or equal to zero"));
Value predLTInputRank =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, dim, inputRank);
b.create<cf::AssertOp>(loc, predLTInputRank,
b.getStringAttr("dim must be smaller than inputRank"));
}
// Hack to deal with the Torch list type arguments which is not supported end
// to end. Constant values can be be extracted directly and non constant
// list values are not supported.
// TODO: loose this constraint when properly support list type
bool isConstantIntListMatching(Value value, SmallVectorImpl<int64_t> &expects) {
SmallVector<int64_t> intValues;
if (!matchPattern(value, m_TorchConstantIntList(intValues)))
return false;
if (intValues.size() != expects.size())
return false;
for (auto it : llvm::zip(intValues, expects)) {
if (std::get<0>(it) != std::get<1>(it))
return false;
}
return true;
}
void checkDimEqualHelper(OpBuilder &b, Location loc, Value lhsDim,
Value rhsDim) {
Type lhsType = lhsDim.getType();
Type rhsType = rhsDim.getType();
auto checkIntOrIndex = [](Type type) {
assert(type.isa<IntegerType>() ||
type.isa<IndexType>() && "must be either integer or index type");
};
checkIntOrIndex(lhsType);
checkIntOrIndex(rhsType);
Value lhsDimInt = lhsType.isIndex() ? castIndexToInt(b, loc, lhsDim) : lhsDim;
Value rhsDimInt = rhsType.isIndex() ? castIndexToInt(b, loc, rhsDim) : rhsDim;
Value contractingDimEqual = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsDimInt, rhsDimInt);
b.create<cf::AssertOp>(loc, contractingDimEqual,
b.getStringAttr("mismatching contracting dimension"));
}
// Creates a tensor with required `sizes` and `elemTy` and fills it with
// initElem.
Value createInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy, Value initElem) {
Value initTensor = b.create<linalg::InitTensorOp>(loc, sizes, elemTy);
return b.create<linalg::FillOp>(loc, initElem, initTensor).getResult(0);
}
Value castIntToIndex(OpBuilder &b, Location loc, Value v) {
assert(v.getType().isa<IntegerType>() && "must be called with integer type");
return b.create<arith::IndexCastOp>(loc, b.getIndexType(), v);
}
Value castIndexToInt(OpBuilder &b, Location loc, Value idx) {
assert(idx.getType().isa<IndexType>() && "must be called with integer type");
return b.create<arith::IndexCastOp>(loc, b.getI64Type(), idx);
}
Value getDimOp(OpBuilder &b, Location loc, Value v, int dim) {
return b.createOrFold<tensor::DimOp>(loc, v, dim);
}
SmallVector<Value> getTensorSizesUntilDim(OpBuilder &b, Location loc,
Value tensor, int dim) {
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
assert(dim < type.getRank() &&
"The given dim must be smaller than tensor rank");
(void)type;
SmallVector<Value> sizes;
for (int i = 0; i <= dim; i++)
sizes.push_back(getDimOp(b, loc, tensor, i));
return sizes;
}
SmallVector<Value> getTensorSizes(OpBuilder &b, Location loc, Value tensor) {
RankedTensorType type = tensor.getType().cast<RankedTensorType>();
return getTensorSizesUntilDim(b, loc, tensor, type.getRank() - 1);
}
Value getTensorSize(OpBuilder &b, Location loc, Value tensor) {
SmallVector<Value> sizes(getTensorSizes(b, loc, tensor));
Value productResult = b.create<arith::ConstantOp>(loc, b.getIndexAttr(1));
for (Value size : sizes)
productResult = b.create<arith::MulIOp>(loc, productResult, size);
return castIndexToInt(b, loc, productResult);
}
Value createZeroInitTensor(OpBuilder &b, Location loc, ValueRange sizes,
Type elemTy) {
Value initTensor = b.create<linalg::InitTensorOp>(loc, sizes, elemTy);
RankedTensorType type = initTensor.getType().cast<RankedTensorType>();
Value c0 =
b.create<arith::ConstantOp>(loc, b.getZeroAttr(type.getElementType()));
return b.create<linalg::FillOp>(loc, c0, initTensor).getResult(0);
}
// Creates a constant of type `elemType` with value `val`.
Value getConstant(OpBuilder &b, Location loc, int64_t val, Type elemType) {
Attribute attr = {};
if (elemType.isa<mlir::FloatType>())
attr = b.getFloatAttr(elemType, val);
if (elemType.isa<mlir::IndexType>())
attr = b.getIndexAttr(val);
if (elemType.isa<mlir::IntegerType>())
attr = b.getIntegerAttr(
elemType, APInt(elemType.cast<IntegerType>().getWidth(), val));
if (!attr)
return nullptr;
return b.create<arith::ConstantOp>(loc, elemType, attr);
}
SmallVector<Value> getAsConstantIntValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints) {
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
return b.create<arith::ConstantOp>(loc,
b.getIntegerAttr(b.getI64Type(), val));
}));
}
SmallVector<Value> getAsConstantIndexValues(OpBuilder &b, Location loc,
SmallVectorImpl<int64_t> &ints) {
return llvm::to_vector<4>(llvm::map_range(ints, [&](int64_t val) -> Value {
return b.create<arith::ConstantOp>(loc, b.getIndexAttr(val));
}));
}
// This is a temporary solution to deal with types that are not fully supported
// like list, dict. For those container tyes, this helper can be used to
// convert their elements to valid target type.
// TODO: remove this when list gets full support.
SmallVector<Value> getTypeConvertedValues(OpBuilder &b, Location loc,
TypeConverter *converter,
SmallVectorImpl<Value> &vs) {
return llvm::to_vector<4>(llvm::map_range(vs, [&](Value v) {
return converter->materializeTargetConversion(
b, loc, converter->convertType(v.getType()), v);
}));
}
// Convert a scalar value to the target type. The scalar value can be an element
// from a tensor or a scalar in the pytorch dialect. Both the scalar and dtype
// should be converted builtin types.
Value convertScalarToDtype(OpBuilder &b, Location loc, Value scalar,
Type dtype) {
Type scalarType = scalar.getType();
if (scalarType == dtype)
return scalar;
// TODO: For the byte(ui8) or char(i8) case, we need the unconverted dtype to
// be able to know if we need signed or unsigned conversion.
auto isByteOrChar = [](Type type) {
if (auto integerTy = type.dyn_cast<mlir::IntegerType>()) {
return integerTy.getWidth() == 8;
}
return false;
};
if (isByteOrChar(scalarType) || isByteOrChar(dtype) ||
dtype.isSignlessInteger(1)) {
// TODO: Handle to-boolean conversion(from-boolean conversion is handled).
mlir::emitError(loc)
<< "unsupported byte, char or bool type for convertScalarToDtype "
<< scalarType << "(scalar type) -> " << dtype << "(dtype)";
return nullptr;
}
if (auto dtypeFloat = dtype.dyn_cast<mlir::FloatType>()) {
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>()) {
if (scalarFloat.getWidth() > dtypeFloat.getWidth())
return b.create<arith::TruncFOp>(loc, dtype, scalar);
// Only scalarFloat width < dtypeFloat width can reach here.
return b.create<arith::ExtFOp>(loc, dtype, scalar);
}
assert(scalarType.isa<mlir::IntegerType>());
if (scalarType.isSignlessInteger(1))
return b.create<arith::UIToFPOp>(loc, dtype, scalar);
// It's safe to use SIToFPOp because ui8/si8 are the only ones where
// unsigned handling is needed, and we checked for that case above.
return b.create<arith::SIToFPOp>(loc, dtype, scalar);
}
if (auto dtypeInteger = dtype.dyn_cast<mlir::IntegerType>()) {
if (auto scalarFloat = scalarType.dyn_cast<mlir::FloatType>())
return b.create<arith::FPToSIOp>(loc, dtype, scalar);
assert(scalarType.isa<mlir::IntegerType>());
auto scalarInteger = scalarType.cast<mlir::IntegerType>();
if (scalarInteger.getWidth() > dtypeInteger.getWidth())
return b.create<arith::TruncIOp>(loc, dtype, scalar);
if (scalarType.isSignlessInteger(1))
return b.create<arith::ExtUIOp>(loc, dtype, scalar);
// Only scalarInteger width < dtypeInteger width can reach here.
// It's safe to use ExtSIOp here because ui8/si8 are the only ones where
// unsigned handling is needed, and we checked for that case above.
return b.create<arith::ExtSIOp>(loc, dtype, scalar);
}
llvm_unreachable("convertScalarToDtype should handle all the types");
}
} // namespace Torch
} // namespace torch
} // namespace mlir