mirror of https://github.com/llvm/torch-mlir
[TorchToStablehlo] support l1_loss, deg2rad, logit (#3865)
parent
896f66c688
commit
bdbc64a205
|
@ -9383,6 +9383,31 @@ def Torch_AtenMseLossBackwardOp : Torch_Op<"aten.mse_loss_backward", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenL1LossOp : Torch_Op<"aten.l1_loss", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::l1_loss : (Tensor, Tensor, int) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$target,
|
||||
Torch_IntType:$reduction
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenL1LossOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 3, 1);
|
||||
}
|
||||
void AtenL1LossOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 3, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenUpsampleNearest2dBackwardOp : Torch_Op<"aten.upsample_nearest2d_backward", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
@ -16923,6 +16948,29 @@ def Torch_AtenTrilIndicesOp : Torch_Op<"aten.tril_indices", [
|
|||
let hasVerifier = 1;
|
||||
}
|
||||
|
||||
def Torch_AtenDeg2radOp : Torch_Op<"aten.deg2rad", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::deg2rad : (Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenDeg2radOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||
}
|
||||
void AtenDeg2radOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 1, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_Aten_SoftmaxBackwardDataOp : Torch_Op<"aten._softmax_backward_data", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -1143,6 +1143,49 @@ LogicalResult ConvertAtenOp<AtenLog10Op>::matchAndRewrite(
|
|||
return success();
|
||||
}
|
||||
|
||||
// AtenLogitOp
|
||||
template <>
|
||||
LogicalResult ConvertAtenOp<AtenLogitOp>::matchAndRewrite(
|
||||
AtenLogitOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
auto loc = op.getLoc();
|
||||
|
||||
Value self = adaptor.getSelf();
|
||||
auto selfTy = dyn_cast<RankedTensorType>(self.getType());
|
||||
if (!selfTy) {
|
||||
return op.emitError("only ranked tensor type is supported.");
|
||||
}
|
||||
|
||||
auto outTy = cast<TensorType>(getTypeConverter()->convertType(op.getType()));
|
||||
self = hlo::promoteType(rewriter, op.getLoc(), self, outTy.getElementType());
|
||||
|
||||
selfTy = dyn_cast<RankedTensorType>(self.getType());
|
||||
|
||||
Value eps = adaptor.getEps();
|
||||
auto epsTy = eps.getType();
|
||||
Value newSelf;
|
||||
if (!isa<Torch::NoneType>(epsTy)) {
|
||||
auto epsTensor = hlo::scalarToStablehloTensor(rewriter, op, eps,
|
||||
selfTy.getElementType());
|
||||
Value oneEpsTensor = hlo::getConstantLike(rewriter, loc, 1.0, epsTensor);
|
||||
auto max =
|
||||
rewriter.create<stablehlo::SubtractOp>(loc, oneEpsTensor, epsTensor);
|
||||
newSelf = rewriter.create<stablehlo::ClampOp>(loc, epsTensor, self, max);
|
||||
} else {
|
||||
newSelf = self;
|
||||
}
|
||||
|
||||
Value one = hlo::getConstantLike(rewriter, loc, 1.0, self);
|
||||
Value zi1 = rewriter.create<stablehlo::SubtractOp>(loc, one, newSelf);
|
||||
Value newZi = rewriter.create<stablehlo::DivOp>(loc, newSelf, zi1);
|
||||
|
||||
Value log = rewriter.create<stablehlo::LogOp>(loc, outTy, newZi);
|
||||
|
||||
rewriter.replaceOp(op, log);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
// AtenErfOp
|
||||
template <>
|
||||
LogicalResult ConvertAtenOp<AtenErfOp>::matchAndRewrite(
|
||||
|
@ -2248,6 +2291,7 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
|||
INSERT_ATENOP_PATTERN(AtenGeluOp);
|
||||
INSERT_ATENOP_PATTERN(AtenLog2Op);
|
||||
INSERT_ATENOP_PATTERN(AtenLog10Op);
|
||||
INSERT_ATENOP_PATTERN(AtenLogitOp);
|
||||
INSERT_ATENOP_PATTERN(AtenErfOp);
|
||||
INSERT_ATENOP_PATTERN(AtenGeluBackwardOp);
|
||||
|
||||
|
|
|
@ -10465,6 +10465,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %2 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.deg2rad\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.nll_loss_forward\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<list<int>>, %arg3: !torch.int, %arg4: !torch.int) -> !torch.tuple<list<int>, list<int>> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.nll_loss_forward(%arg0, %arg1, %arg2, %arg3) : (!torch.list<int>, !torch.list<int>, !torch.optional<list<int>>, !torch.int) -> !torch.tuple<list<int>, list<int>>\n"
|
||||
" return %0 : !torch.tuple<list<int>, list<int>>\n"
|
||||
|
@ -10485,6 +10489,18 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %1 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.l1_loss\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.int) -> !torch.list<int> {\n"
|
||||
" %int0 = torch.constant.int 0\n"
|
||||
" %0 = torch.aten.eq.int %arg2, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %1 = torch.prim.If %0 -> (!torch.list<int>) {\n"
|
||||
" %2 = func.call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" torch.prim.If.yield %2 : !torch.list<int>\n"
|
||||
" } else {\n"
|
||||
" %2 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
||||
" torch.prim.If.yield %2 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" return %1 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.cross_entropy_loss\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<list<int>>, %arg3: !torch.int, %arg4: !torch.int, %arg5: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.cross_entropy_loss(%arg0, %arg1, %arg2, %arg3, %arg4, %arg5) : (!torch.list<int>, !torch.list<int>, !torch.optional<list<int>>, !torch.int, !torch.int, !torch.float) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -13864,6 +13880,24 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %4 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.l1_loss\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.int) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %2 = torch.prim.ListConstruct %0#0, %1#0 : (!torch.int, !torch.int) -> !torch.list<optional<int>>\n"
|
||||
" %3 = torch.prim.ListConstruct %0#1, %1#1 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" %5 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.is_integer_dtype(%4) : (!torch.int) -> !torch.bool\n"
|
||||
" %6 = torch.aten.__not__ %5 : !torch.bool -> !torch.bool\n"
|
||||
" torch.prim.If %6 -> () {\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" } else {\n"
|
||||
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||
" torch.prim.If.yield\n"
|
||||
" }\n"
|
||||
" return %4 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.mul.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
|
@ -15918,6 +15952,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.deg2rad\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.int_repr\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %int3 = torch.constant.int 3\n"
|
||||
" %int1 = torch.constant.int 1\n"
|
||||
|
|
|
@ -1334,6 +1334,44 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenDeg2radOp : public OpRewritePattern<AtenDeg2radOp> {
|
||||
public:
|
||||
using OpRewritePattern<AtenDeg2radOp>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenDeg2radOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
auto selfTy = dyn_cast<BaseTensorType>(self.getType());
|
||||
if (!selfTy || !selfTy.getDtype()) {
|
||||
return rewriter.notifyMatchFailure(op, "requires tensor types input.");
|
||||
}
|
||||
|
||||
auto outTy = dyn_cast<BaseTensorType>(op.getType());
|
||||
if (!outTy || !outTy.getDtype()) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "requires output is a tensor with dtype.");
|
||||
}
|
||||
|
||||
if (selfTy.getDtype() != outTy.getDtype()) {
|
||||
self = convertTensorToDtype(rewriter, loc, self, outTy.getDtype());
|
||||
}
|
||||
|
||||
Value pi =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(M_PI));
|
||||
Value basic =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(180.0));
|
||||
Value rad =
|
||||
rewriter.create<AtenDivScalarOp>(loc, op.getType(), self, basic);
|
||||
Value result = rewriter.create<AtenMulScalarOp>(loc, op.getType(), rad, pi);
|
||||
|
||||
rewriter.replaceOp(op, result);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
|
||||
public:
|
||||
|
@ -8640,6 +8678,71 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenL1LossOp : public OpRewritePattern<AtenL1LossOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenL1LossOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
auto selfTy = dyn_cast<BaseTensorType>(self.getType());
|
||||
if (!selfTy || !selfTy.hasSizes() || !selfTy.hasDtype()) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Expected self to be a tensor with sizes and a dtype");
|
||||
}
|
||||
|
||||
Value target = op.getTarget();
|
||||
auto targetTy = dyn_cast<BaseTensorType>(target.getType());
|
||||
if (!targetTy || !targetTy.hasDtype()) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Expected target to be a tensor with sizes and a dtype");
|
||||
}
|
||||
|
||||
auto outTy = dyn_cast<BaseTensorType>(op.getType());
|
||||
if (!outTy || !outTy.hasDtype()) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Expected output type to be a tensor with a dtype");
|
||||
}
|
||||
|
||||
auto outDtype = outTy.getDtype();
|
||||
if (selfTy.getDtype() != outDtype) {
|
||||
self = convertTensorToDtype(rewriter, loc, self, outDtype);
|
||||
}
|
||||
if (targetTy.getDtype() != outDtype) {
|
||||
target = convertTensorToDtype(rewriter, loc, target, outDtype);
|
||||
}
|
||||
|
||||
Value reduction = op.getReduction();
|
||||
int64_t reductionInt;
|
||||
if (!matchPattern(reduction, m_TorchConstantInt(&reductionInt))) {
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Expected reduction to be a constant int");
|
||||
}
|
||||
|
||||
auto subTy = outTy.getWithSizesAndDtype(selfTy.getSizes(), outDtype);
|
||||
Value sub = createTensorSub(rewriter, loc, subTy, self, target);
|
||||
Value abs = rewriter.create<AtenAbsOp>(loc, subTy, sub);
|
||||
|
||||
if (reductionInt == 0) {
|
||||
rewriter.replaceOp(op, abs);
|
||||
} else if (reductionInt == 1) {
|
||||
Value none = rewriter.create<ConstantNoneOp>(loc);
|
||||
Value sum = rewriter.create<AtenSumOp>(loc, outTy, abs, none);
|
||||
Value numel = rewriter.create<AtenNumelOp>(loc, abs);
|
||||
Value mean = rewriter.create<AtenDivScalarOp>(loc, outTy, sum, numel);
|
||||
rewriter.replaceOp(op, mean);
|
||||
} else {
|
||||
Value none = rewriter.create<ConstantNoneOp>(loc);
|
||||
Value sum = rewriter.create<AtenSumOp>(loc, outTy, abs, none);
|
||||
rewriter.replaceOp(op, sum);
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// Decompose `aten.norm.ScalarOpt_dim` op to `aten.linalg_vector_norm` op
|
||||
class DecomposeAtenNormScalarOptDimOp
|
||||
|
@ -10776,6 +10879,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAten_EmbeddingBagOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLiftFreshCopyOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenMseLossOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenL1LossOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNormScalarOptDimOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintLowOp>(patterns);
|
||||
|
@ -10821,6 +10925,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenTriuOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTriuIndicesOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTrilIndicesOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenDeg2radOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLinalgNormOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAten_LinalgDetOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLinalgSlogdetOp>(patterns);
|
||||
|
|
|
@ -527,6 +527,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenLerpScalarOp>();
|
||||
target.addIllegalOp<AtenLerpTensorOp>();
|
||||
target.addIllegalOp<AtenMseLossOp>();
|
||||
target.addIllegalOp<AtenL1LossOp>();
|
||||
target.addIllegalOp<AtenRandintLowOp>();
|
||||
target.addIllegalOp<AtenRandintOp>();
|
||||
target.addIllegalOp<AtenVarMeanCorrectionOp>();
|
||||
|
@ -564,6 +565,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenTriuOp>();
|
||||
target.addIllegalOp<AtenTriuIndicesOp>();
|
||||
target.addIllegalOp<AtenTrilIndicesOp>();
|
||||
target.addIllegalOp<AtenDeg2radOp>();
|
||||
target.addIllegalOp<AtenLinalgNormOp>();
|
||||
target.addIllegalOp<AtenFminOp>();
|
||||
target.addIllegalOp<AtenFmaxOp>();
|
||||
|
|
|
@ -701,7 +701,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
|||
"ElementwiseDequantizePerChannelModule_basic",
|
||||
"ElementwiseDequantizePerTensorModule_basic",
|
||||
"ElementwiseErfIntModule_basic",
|
||||
"ElementwiseLogitModule_basic",
|
||||
"ElementwiseMulTensorComplexModule_basic",
|
||||
"ElementwiseMulTensorComplexDiffModule_basic",
|
||||
"ElementwiseQuantizePerTensorModule_basic",
|
||||
|
@ -2899,6 +2898,7 @@ ONNX_XFAIL_SET = {
|
|||
"ConvolutionModule2DTransposeNonUnitOutputPadding_basic",
|
||||
"ConvolutionModule2DTransposeStrided_basic",
|
||||
"ConvolutionModule2DTranspose_basic",
|
||||
"Deg2radModule_basic",
|
||||
"DivFloatModule_basic",
|
||||
"DivIntModule_basic",
|
||||
"ElementwiseAcoshIntModule_basic",
|
||||
|
@ -2986,6 +2986,9 @@ ONNX_XFAIL_SET = {
|
|||
"IsFloatingPointInt_False",
|
||||
"IscloseStaticModuleTrue_basic",
|
||||
"IscloseStaticModule_basic",
|
||||
"L1LossNoReductionModule_basic",
|
||||
"L1LossMeanReductionModule_basic",
|
||||
"L1LossSumReductionModule_basic",
|
||||
"LeakyReluBackwardModule_basic",
|
||||
"LeakyReluBackwardStaticModule_basic",
|
||||
"LenStrModule_basic",
|
||||
|
|
|
@ -2062,6 +2062,9 @@ def aten〇tril_indices〡shape(row: int, col: int, offset: int = 0, dtype: Opti
|
|||
|
||||
return [2, trapezoid_size + rectangle_size]
|
||||
|
||||
def aten〇deg2rad〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
@check_shape_function([
|
||||
Invocation(TensorOfShape(2, 3), LongTensorOfShape(2), None, 1, -100), # Basic case.
|
||||
Invocation(TensorOfShape(3), LongTensorOfShape(), None, 1, -100), # No batch dim.
|
||||
|
@ -2080,6 +2083,11 @@ def aten〇mse_loss〡shape(self: List[int], target: List[int], reduction: int =
|
|||
return upstream_shape_functions.unary(self)
|
||||
return []
|
||||
|
||||
def aten〇l1_loss〡shape(self: List[int], target: List[int], reduction: int = 1) -> List[int]:
|
||||
if reduction == 0:
|
||||
return upstream_shape_functions.unary(self)
|
||||
return []
|
||||
|
||||
def aten〇cross_entropy_loss〡shape(self: List[int], target: List[int], weight: Optional[List[int]] = None, reduction: int = 1, ignore_index: int = -100, label_smoothing: float = 0.) -> List[int]:
|
||||
return upstream_shape_functions.cross_entropy_loss(self, target, weight, reduction, ignore_index, label_smoothing)
|
||||
|
||||
|
@ -4262,6 +4270,15 @@ def aten〇mse_loss〡dtype(self_rank_dtype: Tuple[int, int], target_rank_dtype:
|
|||
assert not is_integer_dtype(promoted_dtype)
|
||||
return promoted_dtype
|
||||
|
||||
def aten〇l1_loss〡dtype(self_rank_dtype: Tuple[int, int], target_rank_dtype: Tuple[int, int], reduction: int = 1) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
target_rank, target_dtype = target_rank_dtype
|
||||
ranks: List[Optional[int]] = [self_rank, target_rank]
|
||||
dtypes = [self_dtype, target_dtype]
|
||||
promoted_dtype = promote_dtypes(ranks, dtypes)
|
||||
assert not is_integer_dtype(promoted_dtype)
|
||||
return promoted_dtype
|
||||
|
||||
@check_dtype_function(_check_two_tensor_op())
|
||||
def aten〇mul〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
|
||||
other_rank, other_dtype = other_rank_dtype
|
||||
|
@ -5734,6 +5751,10 @@ def aten〇triu_indices〡dtype(row: int, col: int, offset: int = 0, dtype: Opti
|
|||
def aten〇tril_indices〡dtype(row: int, col: int, offset: int = 0, dtype: Optional[int] = 4, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> int:
|
||||
return torch.int64 if dtype is None else dtype
|
||||
|
||||
def aten〇deg2rad〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
def aten〇int_repr〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
if (self_dtype == torch.quint8):
|
||||
|
|
|
@ -747,6 +747,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::frobenius_norm.dim : (Tensor, int[], bool) -> (Tensor)")
|
||||
emit("aten::mse_loss : (Tensor, Tensor, int) -> (Tensor)")
|
||||
emit("aten::mse_loss_backward : (Tensor, Tensor, Tensor, int) -> (Tensor)")
|
||||
emit("aten::l1_loss : (Tensor, Tensor, int) -> (Tensor)")
|
||||
emit(
|
||||
"aten::upsample_nearest2d_backward : (Tensor, int[], int[], float?, float?) -> (Tensor)"
|
||||
)
|
||||
|
@ -1170,6 +1171,8 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
has_verifier=True,
|
||||
)
|
||||
|
||||
emit("aten::deg2rad : (Tensor) -> (Tensor)")
|
||||
|
||||
# backprop ops
|
||||
emit("aten::_softmax_backward_data : (Tensor, Tensor, int, int) -> (Tensor)")
|
||||
emit("aten::tanh_backward : (Tensor, Tensor) -> (Tensor)")
|
||||
|
|
|
@ -7173,3 +7173,26 @@ class TrilIndicesOfssetGreaterThanRowModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: TrilIndicesOfssetGreaterThanRowModule())
|
||||
def TrilIndicesOfssetGreaterThanRowModule_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class Deg2radModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([3, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x):
|
||||
return torch.ops.aten.deg2rad(x)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: Deg2radModule())
|
||||
def Deg2radModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
|
|
@ -2260,6 +2260,78 @@ def MseLossSumReductionWithDifferentElemTypeModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class L1LossNoReductionModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([2, 4], torch.float32, True),
|
||||
([2, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x, y):
|
||||
return torch.ops.aten.l1_loss(x, y, reduction=0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: L1LossNoReductionModule())
|
||||
def L1LossNoReductionModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 4), tu.rand(2, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class L1LossMeanReductionModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([2, 4], torch.float32, True),
|
||||
([2, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x, y):
|
||||
return torch.ops.aten.l1_loss(x, y, reduction=1)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: L1LossMeanReductionModule())
|
||||
def L1LossMeanReductionModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 4), tu.rand(2, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class L1LossSumReductionModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([2, 4], torch.float32, True),
|
||||
([2, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x, y):
|
||||
return torch.ops.aten.l1_loss(x, y, reduction=2)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: L1LossSumReductionModule())
|
||||
def L1LossSumReductionModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 4), tu.rand(2, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class CrossEntropyLossModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue