[RefBackend] Rename Npcomprt dialect to Refbackrt.

pull/73/head
Sean Silva 2020-10-07 17:12:52 -07:00
parent 83ad70ef54
commit bf99a82832
41 changed files with 352 additions and 352 deletions

View File

@ -1,8 +1,8 @@
add_subdirectory(ATen)
add_subdirectory(Basicpy)
add_subdirectory(Npcomprt)
add_subdirectory(Numpy)
add_subdirectory(RefBackend)
add_subdirectory(Refbackrt)
add_subdirectory(TCF)
add_subdirectory(TCP)
add_subdirectory(Torch)

View File

@ -1 +0,0 @@
add_mlir_dialect(NpcomprtOps npcomprt)

View File

@ -0,0 +1 @@
add_mlir_dialect(RefbackrtOps refbackrt)

View File

@ -6,31 +6,31 @@
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMPRT_BASE
#define NPCOMPRT_BASE
#ifndef REFBACKRT_BASE
#define REFBACKRT_BASE
include "mlir/IR/OpBase.td"
def Npcomprt_Dialect : Dialect {
let name = "npcomprt";
let cppNamespace = "::mlir::NPCOMP::npcomprt";
def Refbackrt_Dialect : Dialect {
let name = "refbackrt";
let cppNamespace = "::mlir::NPCOMP::refbackrt";
let description = [{
The `npcomprt` dialect is the IR manifestation for interaction with the
npcomp runtime. It primarily serves as a layer that enapsulates the data
structures and functions available in the runtime, and faciliates
The `refbackrt` dialect is the IR manifestation for interaction with the
reference backend runtime. It primarily serves as a layer that enapsulates the
data structures and functions available in the runtime, and faciliates
conversion to those conventions, such as by providing utilities for being
lowered to the llvm dialect.
}];
}
def Npcomprt_Tensor
def Refbackrt_Tensor
: DialectType<
Npcomprt_Dialect,
CPred<"$_self.isa<::mlir::NPCOMP::npcomprt::TensorType>()">,
"npcomprt.tensor">,
Refbackrt_Dialect,
CPred<"$_self.isa<::mlir::NPCOMP::refbackrt::TensorType>()">,
"refbackrt.tensor">,
BuildableType<
"$_builder.getType<::mlir::NPCOMP::npcomprt::TensorType>()"> {
"$_builder.getType<::mlir::NPCOMP::refbackrt::TensorType>()"> {
let typeDescription = [{The runtime type that represents a buffer.}];
}
#endif // #ifndef NPCOMPRT_BASE
#endif // #ifndef REFBACKRT_BASE

View File

@ -6,14 +6,14 @@
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTDIALECT_H
#define NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTDIALECT_H
#ifndef NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTDIALECT_H
#define NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTDIALECT_H
#include "mlir/IR/Dialect.h"
namespace mlir {
namespace NPCOMP {
namespace npcomprt {
namespace refbackrt {
class TensorType : public Type::TypeBase<TensorType, Type, TypeStorage> {
public:
@ -22,10 +22,10 @@ public:
static TensorType get(MLIRContext *context) { return Base::get(context); }
};
} // namespace npcomprt
} // namespace refbackrt
} // namespace NPCOMP
} // namespace mlir
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOpsDialect.h.inc"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOpsDialect.h.inc"
#endif // NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTDIALECT_H
#endif // NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTDIALECT_H

View File

@ -6,8 +6,8 @@
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTOPS_H
#define NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTOPS_H
#ifndef NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTOPS_H
#define NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTOPS_H
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
@ -15,6 +15,6 @@
#include "mlir/IR/SymbolTable.h"
#define GET_OP_CLASSES
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.h.inc"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h.inc"
#endif // NPCOMP_DIALECT_NPCOMPRT_IR_NPCOMPRTOPS_H
#endif // NPCOMP_DIALECT_REFBACKRT_IR_REFBACKRTOPS_H

View File

@ -6,37 +6,37 @@
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMPRT_OPS
#define NPCOMPRT_OPS
#ifndef REFBACKRT_OPS
#define REFBACKRT_OPS
include "npcomp/Dialect/Npcomprt/IR/NpcomprtBase.td"
include "npcomp/Dialect/Refbackrt/IR/RefbackrtBase.td"
include "mlir/IR/SymbolInterfaces.td"
class Npcomprt_Op<string mnemonic, list<OpTrait> traits = []>
: Op<Npcomprt_Dialect, mnemonic, traits> {
class Refbackrt_Op<string mnemonic, list<OpTrait> traits = []>
: Op<Refbackrt_Dialect, mnemonic, traits> {
}
def Npcomprt_ToMemrefOp : Npcomprt_Op<"to_memref"> {
def Refbackrt_ToMemrefOp : Refbackrt_Op<"to_memref"> {
let summary = "Gets a memref descriptor from a tensor";
let description = [{
Gets a memref descriptor from a tensor.
}];
let arguments = (ins Npcomprt_Tensor:$tensor);
let arguments = (ins Refbackrt_Tensor:$tensor);
let results = (outs AnyUnrankedMemRef:$memref);
let assemblyFormat = "$tensor attr-dict `:` type($memref)";
}
def Npcomprt_FromMemrefOp : Npcomprt_Op<"from_memref"> {
def Refbackrt_FromMemrefOp : Refbackrt_Op<"from_memref"> {
let summary = "Converts a memref descriptor to a tensor";
let description = [{
Copies the data from a memref into a new tensor.
}];
let arguments = (ins AnyUnrankedMemRef:$memref);
let results = (outs Npcomprt_Tensor:$tensor);
let results = (outs Refbackrt_Tensor:$tensor);
let assemblyFormat = "$memref attr-dict `:` type($memref)";
}
def Npcomprt_AbortIfOp : Npcomprt_Op<"abort_if"> {
def Refbackrt_AbortIfOp : Refbackrt_Op<"abort_if"> {
let summary = "Aborts if the predicate is true";
let description = [{
Aborts if the predicate is true.
@ -46,7 +46,7 @@ def Npcomprt_AbortIfOp : Npcomprt_Op<"abort_if"> {
let assemblyFormat = "$pred `,` $msg attr-dict";
}
def Npcomprt_GlobalOp : Npcomprt_Op<"global", [Symbol]> {
def Refbackrt_GlobalOp : Refbackrt_Op<"global", [Symbol]> {
let summary = "Represents a global variable";
let description = [{
Represents a global variable.
@ -61,19 +61,19 @@ def Npcomprt_GlobalOp : Npcomprt_Op<"global", [Symbol]> {
let parser = [{ return ::parse$cppClass(parser, result); }];
}
def Npcomprt_GetGlobalOp : Npcomprt_Op<"get_global"> {
def Refbackrt_GetGlobalOp : Refbackrt_Op<"get_global"> {
let summary = "Obtain a rank-erased memref pointing at the given global";
let description = [{
Obtain a rank-erased memref pointing at the given global.
TODO: As we define the runtime layer better, we should have fewer
entry points that return memrefs, or at least have a clearer separation
between the "memref world" and the "npcomprt world".
between the "memref world" and the "refbackrt world".
Something like forming IREE dispatch regions seems to be the missing thing:
- Everything inside the dispatch regions gets things marshaled from the
runtime (flow/hal/npcomprt) layer to/from memrefs in a clear way.
runtime (flow/hal/refbackrt) layer to/from memrefs in a clear way.
- Everything outside the dispatch regions purely uses the runtime
(flow/hal/npcomprt) data structures.
(flow/hal/refbackrt) data structures.
Globals should be one of the things that are purely runtime data structures,
rather than using memrefs. For now, using memrefs is simpler though.
}];
@ -83,12 +83,12 @@ def Npcomprt_GetGlobalOp : Npcomprt_Op<"get_global"> {
let verifier = "return ::verify$cppClass(*this);";
}
def Npcomprt_ModuleMetadataOp : Npcomprt_Op<"module_metadata", [
def Refbackrt_ModuleMetadataOp : Refbackrt_Op<"module_metadata", [
SingleBlockImplicitTerminator<"ModuleMetadataTerminatorOp">
]> {
let summary = "Global metadata for the module";
let description = [{
This op contains a region containing npcomprt.func_metadata ops,
This op contains a region containing refbackrt.func_metadata ops,
which give information about the functions in the module. This allows
the module to be introspected when it is loaded, such as looking up
functions.
@ -110,8 +110,8 @@ def Npcomprt_ModuleMetadataOp : Npcomprt_Op<"module_metadata", [
let parser = [{ return ::parse$cppClass(parser, result); }];
}
def Npcomprt_ModuleMetadataTerminatorOp
: Npcomprt_Op<"module_metadata_terminator",
def Refbackrt_ModuleMetadataTerminatorOp
: Refbackrt_Op<"module_metadata_terminator",
[Terminator, HasParent<"ModuleMetadataOp">]> {
let summary = "Implicit terminator for ModuleMetadataOp's region";
let arguments = (ins);
@ -119,8 +119,8 @@ def Npcomprt_ModuleMetadataTerminatorOp
let assemblyFormat = "attr-dict";
}
def Npcomprt_FuncMetadataOp
: Npcomprt_Op<"func_metadata", [HasParent<"ModuleMetadataOp">]> {
def Refbackrt_FuncMetadataOp
: Refbackrt_Op<"func_metadata", [HasParent<"ModuleMetadataOp">]> {
let summary = "Runtime metadata for a single func";
let description = [{
Runtime metadata for a single func.
@ -138,4 +138,4 @@ def Npcomprt_FuncMetadataOp
let verifier = [{ return ::verify(*this); }];
}
#endif // #ifndef NPCOMPRT_OPS
#endif // #ifndef REFBACKRT_OPS

View File

@ -24,7 +24,7 @@ class PassManager;
} // namespace mlir
namespace npcomp {
// Wrapper around npcomprt data structures and a JITted module, facilitating
// Wrapper around refbackrt data structures and a JITted module, facilitating
// interaction.
class JITModule {
public:
@ -40,14 +40,14 @@ public:
fromCompiledModule(mlir::ModuleOp module,
llvm::ArrayRef<llvm::StringRef> sharedLibs);
llvm::Expected<llvm::SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6>>
llvm::Expected<llvm::SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6>>
invoke(llvm::StringRef functionName,
llvm::ArrayRef<npcomprt::Ref<npcomprt::Tensor>> inputs);
llvm::ArrayRef<refbackrt::Ref<refbackrt::Tensor>> inputs);
private:
JITModule();
std::unique_ptr<mlir::ExecutionEngine> engine;
npcomprt::ModuleDescriptor *descriptor;
refbackrt::ModuleDescriptor *descriptor;
};
} // namespace npcomp

View File

@ -52,10 +52,10 @@ def LowerStructuralToMemref :
let constructor = "mlir::NPCOMP::createLowerStructuralToMemrefPass()";
}
def LowerToNpcomprtABI : Pass<"lower-to-npcomprt-abi", "ModuleOp"> {
let summary = "Lower constructs requiring runtime support to `npcomprt`";
def LowerToRefbackrtABI : Pass<"lower-to-refbackrt-abi", "ModuleOp"> {
let summary = "Lower constructs requiring runtime support to `refbackrt`";
let description = [{
We have a specialized dialect `npcomprt` which models our runtime's data
We have a specialized dialect `refbackrt` which models our runtime's data
structures, and function signatures (and presumably eventually, other
ABI boundaries like external calls if we ever support it) will be
converted.
@ -65,7 +65,7 @@ def LowerToNpcomprtABI : Pass<"lower-to-npcomprt-abi", "ModuleOp"> {
- globals
- error handling
}];
let constructor = "mlir::NPCOMP::createLowerToNpcomprtABIPass()";
let constructor = "mlir::NPCOMP::createLowerToRefbackrtABIPass()";
}
def LowerAllocMemRefOps : Pass<"lower-alloc-memref-ops", "FuncOp"> {

View File

@ -34,7 +34,7 @@ createLowerConstantTensorsToMemrefPass();
std::unique_ptr<OperationPass<FuncOp>> createLowerStructuralToMemrefPass();
std::unique_ptr<OperationPass<ModuleOp>> createLowerToNpcomprtABIPass();
std::unique_ptr<OperationPass<ModuleOp>> createLowerToRefbackrtABIPass();
std::unique_ptr<OperationPass<FuncOp>> createLowerAllocMemRefOpsPass();

View File

@ -1,4 +1,4 @@
RefBackendRt (namespace `refbackrt`) is the runtime support library for the
Refbackrt (namespace `refbackrt`) is the runtime support library for the
RefBackend backend. It is best practice to keep compiler and runtime code
totally firewalled.

View File

@ -19,7 +19,7 @@
#include <cstdint>
#include <cstring>
namespace npcomprt {
namespace refbackrt {
class StringRef {
public:
StringRef(const char *ptr, std::size_t length) : ptr(ptr), length(length){};
@ -94,6 +94,6 @@ inline bool failed(LogicalResult result) {
return result.value == LogicalResult::Failure;
}
} // namespace npcomprt
} // namespace refbackrt
#endif // NPCOMP_RUNTIME_SUPPORT_H

View File

@ -25,7 +25,7 @@
#include <atomic>
#include <cstdlib>
namespace npcomprt {
namespace refbackrt {
// Reference-counted handle to a type with a `refCount` member.
template <typename T> class Ref {
@ -178,6 +178,6 @@ LogicalResult getMetadata(ModuleDescriptor *moduleDescriptor,
StringRef functionName,
FunctionMetadata &outMetadata);
} // namespace npcomprt
} // namespace refbackrt
#endif // NPCOMP_RUNTIME_USERAPI_H

View File

@ -22,8 +22,8 @@ using llvm::Twine;
using mlir::PyModuleOp;
using mlir::PyPassManager;
using npcomp::JITModule;
using npcomprt::Ref;
using npcomprt::Tensor;
using refbackrt::Ref;
using refbackrt::Tensor;
template <typename T>
static T checkError(llvm::Expected<T> &&expected, Twine banner = {}) {
@ -37,10 +37,10 @@ static T checkError(llvm::Expected<T> &&expected, Twine banner = {}) {
throw py::raisePyError(PyExc_RuntimeError, errorMessage.c_str());
}
static npcomprt::ElementType
static refbackrt::ElementType
mapBufferFormatToElementType(const std::string &format, py::ssize_t itemSize) {
if (format == "f")
return npcomprt::ElementType::F32;
return refbackrt::ElementType::F32;
std::string message("unsupported buffer format: ");
message.append(format);
@ -61,7 +61,7 @@ static Ref<Tensor> copyBufferToTensor(py::buffer buffer) {
// TODO: Switch Tensor extents to ssize_t for efficiency.
SmallVector<std::int32_t, 4> extents(info.shape.begin(), info.shape.end());
return Tensor::create(
npcomprt::ArrayRef<std::int32_t>(extents.data(), extents.size()),
refbackrt::ArrayRef<std::int32_t>(extents.data(), extents.size()),
elementType, info.ptr);
}
@ -73,7 +73,7 @@ py::array wrapTensorAsArray(Ref<Tensor> tensor) {
const char *format;
switch (tensor->getElementType()) {
case npcomprt::ElementType::F32:
case refbackrt::ElementType::F32:
format = "f";
break;
default:

View File

@ -43,7 +43,7 @@ add_mlir_library(NPCOMPInitAll
NPCOMPTCPDialect
NPCOMPTCFDialect
NPCOMPTorchDialect
NPCOMPNpcomprtDialect
NPCOMPRefbackrtDialect
NPCOMPATenDialect
NPCOMPBasicpyDialect
NPCOMPBasicpyPasses

View File

@ -1,8 +1,8 @@
add_subdirectory(ATen)
add_subdirectory(Basicpy)
add_subdirectory(Npcomprt)
add_subdirectory(Numpy)
add_subdirectory(RefBackend)
add_subdirectory(Refbackrt)
add_subdirectory(TCF)
add_subdirectory(TCP)
add_subdirectory(Torch)

View File

@ -1,17 +0,0 @@
add_mlir_dialect_library(NPCOMPNpcomprtDialect
NpcomprtDialect.cpp
NpcomprtOps.cpp
ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/npcomp/Dialect/Npcomprt
DEPENDS
MLIRNpcomprtOpsIncGen
LINK_COMPONENTS
Core
LINK_LIBS PUBLIC
MLIRIR
MLIRSupport
)

View File

@ -0,0 +1,17 @@
add_mlir_dialect_library(NPCOMPRefbackrtDialect
RefbackrtDialect.cpp
RefbackrtOps.cpp
ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/npcomp/Dialect/Refbackrt
DEPENDS
MLIRRefbackrtOpsIncGen
LINK_COMPONENTS
Core
LINK_LIBS PUBLIC
MLIRIR
MLIRSupport
)

View File

@ -6,23 +6,23 @@
//
//===----------------------------------------------------------------------===//
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::NPCOMP::npcomprt;
using namespace mlir::NPCOMP::refbackrt;
void NpcomprtDialect::initialize() {
void RefbackrtDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.cpp.inc"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.cpp.inc"
>();
addTypes<TensorType>();
}
Type NpcomprtDialect::parseType(DialectAsmParser &parser) const {
Type RefbackrtDialect::parseType(DialectAsmParser &parser) const {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
@ -30,14 +30,14 @@ Type NpcomprtDialect::parseType(DialectAsmParser &parser) const {
if (keyword == "tensor")
return TensorType::get(getContext());
parser.emitError(parser.getNameLoc(), "unknown type in 'npcomprt' dialect: ")
parser.emitError(parser.getNameLoc(), "unknown type in 'refbackrt' dialect: ")
<< keyword;
return Type();
}
void NpcomprtDialect::printType(Type type, DialectAsmPrinter &os) const {
void RefbackrtDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<NPCOMP::npcomprt::TensorType>([&](Type) { os << "tensor"; })
.Case<NPCOMP::refbackrt::TensorType>([&](Type) { os << "tensor"; })
.Default(
[&](Type) { llvm_unreachable("unexpected 'npcomprt' type kind"); });
[&](Type) { llvm_unreachable("unexpected 'refbackrt' type kind"); });
}

View File

@ -6,22 +6,22 @@
//
//===----------------------------------------------------------------------===//
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/TypeUtilities.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
using namespace mlir;
using namespace mlir::NPCOMP::npcomprt;
using namespace mlir::NPCOMP::refbackrt;
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
static void printGlobalOp(OpAsmPrinter &p, GlobalOp &op) {
p << "npcomprt.global ";
p << "refbackrt.global ";
p.printSymbolName(op.sym_name());
p << ' ';
p.printOptionalAttrDictWithKeyword(op.getAttrs(),
@ -49,7 +49,7 @@ static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) {
static LogicalResult verifyGetGlobalOp(GetGlobalOp op) {
auto global = SymbolTable::lookupNearestSymbolFrom<GlobalOp>(op, op.global());
if (!global)
return op.emitError() << "must reference a valid npcomprt.global";
return op.emitError() << "must reference a valid refbackrt.global";
auto globalType = global.value().getType();
auto resultType = op.getType().cast<ShapedType>();
if (globalType.getElementType() != resultType.getElementType())
@ -62,7 +62,7 @@ static LogicalResult verifyGetGlobalOp(GetGlobalOp op) {
//===----------------------------------------------------------------------===//
static void printModuleMetadataOp(OpAsmPrinter &p, ModuleMetadataOp &op) {
p << "npcomprt.module_metadata";
p << "refbackrt.module_metadata";
p.printOptionalAttrDictWithKeyword(op.getAttrs());
p.printRegion(op.metadatas(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
@ -99,4 +99,4 @@ static LogicalResult verify(FuncMetadataOp op) {
}
#define GET_OP_CLASSES
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.cpp.inc"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.cpp.inc"

View File

@ -12,7 +12,7 @@
#include "npcomp/Dialect/ATen/ATenPasses.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
#include "npcomp/Dialect/Basicpy/Transforms/Passes.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
#include "npcomp/Dialect/Numpy/IR/NumpyDialect.h"
#include "npcomp/Dialect/Numpy/Transforms/Passes.h"
#include "npcomp/Dialect/RefBackend/IR/RefBackendDialect.h"
@ -73,7 +73,7 @@ void mlir::NPCOMP::registerAllDialects(mlir::DialectRegistry &registry) {
registry.insert<mlir::NPCOMP::aten::ATenDialect,
Basicpy::BasicpyDialect,
Numpy::NumpyDialect,
npcomprt::NpcomprtDialect,
refbackrt::RefbackrtDialect,
refback::RefBackendDialect,
tcf::TCFDialect,
tcp::TCPDialect,

View File

@ -5,7 +5,7 @@ add_mlir_library(NPCOMPRefBackend
BypassShapes.cpp
RefBackend.cpp
LowerToLLVM.cpp
LowerToNpcomprtABI.cpp
LowerToRefbackrtABI.cpp
TensorToMemref/LowerConstantTensorsToMemref.cpp
TensorToMemref/LowerShapedResultsToMemref.cpp
TensorToMemref/LowerStdToMemref.cpp

View File

@ -51,39 +51,40 @@ JITModule::fromCompiledModule(mlir::ModuleOp module,
if (!expectedAddress)
return expectedAddress.takeError();
ret->descriptor =
reinterpret_cast<npcomprt::ModuleDescriptor *>(*expectedAddress);
reinterpret_cast<refbackrt::ModuleDescriptor *>(*expectedAddress);
return std::move(ret);
}
// Converter for bridging to npcomprt llvm-lookalike data structures.
static npcomprt::StringRef toNpcomprt(llvm::StringRef s) {
return npcomprt::StringRef(s.data(), s.size());
// Converter for bridging to refbackrt llvm-lookalike data structures.
static refbackrt::StringRef toRefbackrt(llvm::StringRef s) {
return refbackrt::StringRef(s.data(), s.size());
}
template <typename T>
static npcomprt::ArrayRef<T> toNpcomprt(llvm::ArrayRef<T> a) {
return npcomprt::ArrayRef<T>(a.data(), a.size());
static refbackrt::ArrayRef<T> toRefbackrt(llvm::ArrayRef<T> a) {
return refbackrt::ArrayRef<T>(a.data(), a.size());
}
template <typename T>
static npcomprt::MutableArrayRef<T> toNpcomprt(llvm::MutableArrayRef<T> a) {
return npcomprt::MutableArrayRef<T>(a.data(), a.size());
static refbackrt::MutableArrayRef<T> toRefbackrt(llvm::MutableArrayRef<T> a) {
return refbackrt::MutableArrayRef<T>(a.data(), a.size());
}
llvm::Expected<llvm::SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6>>
llvm::Expected<llvm::SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6>>
JITModule::invoke(llvm::StringRef functionName,
llvm::ArrayRef<npcomprt::Ref<npcomprt::Tensor>> inputs) {
npcomprt::FunctionMetadata metadata;
if (npcomprt::failed(npcomprt::getMetadata(
descriptor, toNpcomprt(functionName), metadata)))
llvm::ArrayRef<refbackrt::Ref<refbackrt::Tensor>> inputs) {
refbackrt::FunctionMetadata metadata;
if (refbackrt::failed(refbackrt::getMetadata(
descriptor, toRefbackrt(functionName), metadata)))
return make_string_error("unknown function: " + Twine(functionName));
SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6> outputs(metadata.numOutputs);
SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6> outputs(
metadata.numOutputs);
if (metadata.numInputs != static_cast<std::int32_t>(inputs.size()))
return make_string_error("invoking '" + Twine(functionName) +
"': expected " + Twine(metadata.numInputs) +
" inputs");
npcomprt::invoke(
descriptor, toNpcomprt(functionName), toNpcomprt(inputs),
toNpcomprt(llvm::makeMutableArrayRef(outputs.data(), outputs.size())));
refbackrt::invoke(
descriptor, toRefbackrt(functionName), toRefbackrt(inputs),
toRefbackrt(llvm::makeMutableArrayRef(outputs.data(), outputs.size())));
return outputs;
}

View File

@ -15,8 +15,8 @@
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtDialect.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h"
using namespace mlir;
using namespace mlir::NPCOMP;
@ -29,7 +29,7 @@ using mlir::LLVM::LLVMType;
// These correspond to the types in CompilerDataStructures.h
//===----------------------------------------------------------------------===//
// Get the LLVMType for npcomprt::FuncDescriptor.
// Get the LLVMType for refbackrt::FuncDescriptor.
static LLVMType getFuncDescriptorTy(MLIRContext *context) {
return LLVMType::getStructTy(context, {
// Name length.
@ -45,7 +45,7 @@ static LLVMType getFuncDescriptorTy(MLIRContext *context) {
});
}
// Get the LLVMType for npcomprt::ModuleDescriptor.
// Get the LLVMType for refbackrt::ModuleDescriptor.
static LLVMType getModuleDescriptorTy(MLIRContext *context) {
return LLVMType::getStructTy(context,
{
@ -56,7 +56,7 @@ static LLVMType getModuleDescriptorTy(MLIRContext *context) {
});
}
// Get the LLVMType for npcomprt::GlobalDescriptor.
// Get the LLVMType for refbackrt::GlobalDescriptor.
static LLVMType getGlobalDescriptorTy(MLIRContext *context) {
return LLVMType::getStructTy(
// std::int32_t numExtents;
@ -97,13 +97,13 @@ namespace {
// FromMemrefOp requires special handling so that the unranked memref descriptor
// gets passed as two separate arguments instead of as a struct.
class FromMemrefOpCompilerRuntimeLowering
: public OpConversionPattern<npcomprt::FromMemrefOp> {
: public OpConversionPattern<refbackrt::FromMemrefOp> {
public:
FromMemrefOpCompilerRuntimeLowering(LLVM::LLVMFuncOp backingFunc)
: OpConversionPattern<npcomprt::FromMemrefOp>(backingFunc.getContext()),
: OpConversionPattern<refbackrt::FromMemrefOp>(backingFunc.getContext()),
backingFunc(backingFunc) {}
LogicalResult
matchAndRewrite(npcomprt::FromMemrefOp op, ArrayRef<Value> operands,
matchAndRewrite(refbackrt::FromMemrefOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto structVal = operands[0];
Value rank = rewriter.create<LLVM::ExtractValueOp>(
@ -124,17 +124,17 @@ public:
namespace {
class GetGlobalOpCompilerRuntimeLowering
: public OpConversionPattern<npcomprt::GetGlobalOp> {
: public OpConversionPattern<refbackrt::GetGlobalOp> {
public:
GetGlobalOpCompilerRuntimeLowering(LLVM::LLVMFuncOp backingFunc)
: OpConversionPattern<npcomprt::GetGlobalOp>(backingFunc.getContext()),
: OpConversionPattern<refbackrt::GetGlobalOp>(backingFunc.getContext()),
backingFunc(backingFunc) {}
LogicalResult
matchAndRewrite(npcomprt::GetGlobalOp op, ArrayRef<Value> operands,
matchAndRewrite(refbackrt::GetGlobalOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// It would be nice if we could use the constructor here that takes just the
// global, but keeping track of the converted llvm.mlir.global op that gets
// created from the npcomprt.global while conversion is going on is a
// created from the refbackrt.global while conversion is going on is a
// headache.
//
// Instead, we rely on the symbol name being the same and the result type
@ -178,15 +178,15 @@ static LLVM::GlobalOp createGlobalString(ModuleOp module, StringAttr msg,
namespace {
class AbortIfOpCompilerRuntimeLowering
: public OpConversionPattern<npcomprt::AbortIfOp> {
: public OpConversionPattern<refbackrt::AbortIfOp> {
public:
AbortIfOpCompilerRuntimeLowering(LLVM::LLVMFuncOp backingFunc)
: OpConversionPattern<npcomprt::AbortIfOp>(backingFunc.getContext()),
: OpConversionPattern<refbackrt::AbortIfOp>(backingFunc.getContext()),
backingFunc(backingFunc) {}
LogicalResult
matchAndRewrite(npcomprt::AbortIfOp op, ArrayRef<Value> operands,
matchAndRewrite(refbackrt::AbortIfOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
npcomprt::AbortIfOp::Adaptor adaptor(operands);
refbackrt::AbortIfOp::Adaptor adaptor(operands);
auto *context = op.getContext();
// Create the global string, take its address, and gep to get an `i8*`.
@ -207,7 +207,7 @@ public:
};
} // namespace
// Create the LLVM runtime function backing the npcomprt op with name `name`
// Create the LLVM runtime function backing the refbackrt op with name `name`
// and requiring `type`.
static LLVMFuncOp createCompilerRuntimeFuncDecl(StringRef name, LLVMType type,
OpBuilder &builder,
@ -242,12 +242,12 @@ static void populateCompilerRuntimePatterns(ModuleOp module,
{
auto mlirFunctionType = builder.getFunctionType(
{builder.getType<npcomprt::TensorType>()},
{builder.getType<refbackrt::TensorType>()},
{UnrankedMemRefType::get(builder.getF32Type(), /*memorySpace=*/0)});
LLVMType funcTy = convertFunctionType(mlirFunctionType);
LLVMFuncOp toMemrefFunc = createCompilerRuntimeFuncDecl(
"to_memref", funcTy, builder, module.getLoc());
patterns.insert<TrivialCompilerRuntimeLowering<npcomprt::ToMemrefOp>>(
patterns.insert<TrivialCompilerRuntimeLowering<refbackrt::ToMemrefOp>>(
toMemrefFunc);
}
@ -256,7 +256,7 @@ static void populateCompilerRuntimePatterns(ModuleOp module,
// doesn't know its own dtype.
auto mlirFunctionType = builder.getFunctionType(
{UnrankedMemRefType::get(builder.getF32Type(), /*memorySpace=*/0)},
{builder.getType<npcomprt::TensorType>()});
{builder.getType<refbackrt::TensorType>()});
LLVMType funcTy = convertFunctionType(mlirFunctionType);
LLVMFuncOp fromMemrefFunc = createCompilerRuntimeFuncDecl(
"from_memref", funcTy, builder, module.getLoc());
@ -277,24 +277,24 @@ static void populateCompilerRuntimePatterns(ModuleOp module,
}
//===----------------------------------------------------------------------===//
// Lowering for npcomprt.global
// Lowering for refbackrt.global
//===----------------------------------------------------------------------===//
namespace {
class LowerNpcomprtGlobalOp : public OpConversionPattern<npcomprt::GlobalOp> {
class LowerRefbackrtGlobalOp : public OpConversionPattern<refbackrt::GlobalOp> {
public:
explicit LowerNpcomprtGlobalOp(LLVMTypeConverter &typeConverter)
: OpConversionPattern<npcomprt::GlobalOp>(&typeConverter.getContext()),
explicit LowerRefbackrtGlobalOp(LLVMTypeConverter &typeConverter)
: OpConversionPattern<refbackrt::GlobalOp>(&typeConverter.getContext()),
typeConverter(typeConverter) {}
LogicalResult
matchAndRewrite(npcomprt::GlobalOp op, ArrayRef<Value> operands,
matchAndRewrite(refbackrt::GlobalOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto *context = rewriter.getContext();
auto globalDescriptorTy = getGlobalDescriptorTy(context);
// Create the data buffer.
auto dataBuffer = createGlobalForDenseElementsAttr(
(Twine("__npcomprt_global_data_buffer_") + op.sym_name()).str(),
(Twine("__refbackrt_global_data_buffer_") + op.sym_name()).str(),
op.value().cast<DenseElementsAttr>(), op, rewriter);
// Create the extents buffer.
@ -302,8 +302,8 @@ public:
llvm::map_range(op.value().getType().cast<ShapedType>().getShape(),
[](int64_t i) -> int32_t { return i; })));
auto extentsBuffer = createGlobalForDenseElementsAttr(
(Twine("__npcomprt_global_extents_") + op.sym_name()).str(), extentsI32,
op, rewriter);
(Twine("__refbackrt_global_extents_") + op.sym_name()).str(),
extentsI32, op, rewriter);
// Create the GlobalDescriptor.
auto globalDescriptorGlobal = rewriter.create<LLVM::GlobalOp>(
@ -352,7 +352,7 @@ public:
private:
// TODO: It feels like MLIR core should have better utilities for this.
LLVM::GlobalOp createGlobalForDenseElementsAttr(
StringRef symbolName, DenseElementsAttr elements, npcomprt::GlobalOp op,
StringRef symbolName, DenseElementsAttr elements, refbackrt::GlobalOp op,
ConversionPatternRewriter &rewriter) const {
auto type = elements.getType().cast<ShapedType>();
@ -384,7 +384,7 @@ private:
/*isConstant=*/true, LLVM::Linkage::Internal, symbolName, elements);
}
LLVMType getLLVMTypeForShapedType(ShapedType type, npcomprt::GlobalOp op,
LLVMType getLLVMTypeForShapedType(ShapedType type, refbackrt::GlobalOp op,
ConversionPatternRewriter &rewriter) const {
auto llvmType =
typeConverter.convertType(type.getElementType()).cast<LLVMType>();
@ -425,7 +425,7 @@ private:
//===----------------------------------------------------------------------===//
static LLVM::GlobalOp
createFuncDescriptorArray(ArrayRef<npcomprt::FuncMetadataOp> funcMetadatas,
createFuncDescriptorArray(ArrayRef<refbackrt::FuncMetadataOp> funcMetadatas,
OpBuilder &builder, Location loc) {
auto llvmI32Ty = LLVMType::getIntNTy(builder.getContext(), 32);
@ -556,14 +556,14 @@ LLVM::GlobalOp createModuleDescriptor(LLVM::GlobalOp funcDescriptorArray,
namespace {
class LowerModuleMetadata
: public OpConversionPattern<npcomprt::ModuleMetadataOp> {
: public OpConversionPattern<refbackrt::ModuleMetadataOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(npcomprt::ModuleMetadataOp op, ArrayRef<Value> operands,
matchAndRewrite(refbackrt::ModuleMetadataOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto funcMetadatas =
llvm::to_vector<6>(op.metadatas().getOps<npcomprt::FuncMetadataOp>());
llvm::to_vector<6>(op.metadatas().getOps<refbackrt::FuncMetadataOp>());
auto funcDescriptorArray =
createFuncDescriptorArray(funcMetadatas, rewriter, op.getLoc());
auto moduleDescriptor =
@ -646,7 +646,7 @@ static void storeWrapperResults(LLVM::CallOp callToWrapped, Value resultsPtrPtr,
// Construct a wrapper function.
// For an externally visible function f(T1, T2) -> T3, T4, we create a
// wrapper
// __npcomprt_wrapper_f(void **inputs, void ** outputs) {
// __refbackrt_wrapper_f(void **inputs, void ** outputs) {
// T3 t3;
// T4 t4;
// (t3, t4) = f(*cast<T1*>(inputs[0]), *cast<T2*>(inputs[1]));
@ -664,8 +664,8 @@ static LLVMFuncOp createWrapperFunc(LLVMFuncOp func) {
auto wrapperTy = LLVMType::getFunctionTy(LLVMType::getVoidTy(context),
{voidStarStarTy, voidStarStarTy},
/*isVarArg=*/false);
constexpr char kNpcomprtWrapperPrefix[] = "__npcomprt_wrapper_";
auto wrapperName = (Twine(kNpcomprtWrapperPrefix) + func.getName()).str();
constexpr char kRefbackrtWrapperPrefix[] = "__refbackrt_wrapper_";
auto wrapperName = (Twine(kRefbackrtWrapperPrefix) + func.getName()).str();
OpBuilder moduleBuilder(func.getParentRegion());
LLVMFuncOp wrapper = moduleBuilder.create<LLVMFuncOp>(
func.getLoc(), wrapperName, wrapperTy, LLVM::Linkage::External);
@ -693,8 +693,8 @@ class LowerToLLVM : public LowerToLLVMBase<LowerToLLVM> {
LLVMTypeConverter converter(context);
// npcomprt::TensorType is passed as a `void*` in the ABI.
converter.addConversion([&](npcomprt::TensorType type) {
// refbackrt::TensorType is passed as a `void*` in the ABI.
converter.addConversion([&](refbackrt::TensorType type) {
return LLVMType::getInt8PtrTy(context);
});
@ -706,7 +706,7 @@ class LowerToLLVM : public LowerToLLVMBase<LowerToLLVM> {
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
populateStdToLLVMConversionPatterns(converter, patterns);
patterns.insert<LowerModuleMetadata>(context);
patterns.insert<LowerNpcomprtGlobalOp>(converter);
patterns.insert<LowerRefbackrtGlobalOp>(converter);
// TODO: Move these "std to std" legalizations to their own pass if we grow
// lots of these patterns.

View File

@ -14,8 +14,8 @@
#include "mlir/IR/Verifier.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtDialect.h"
#include "npcomp/Dialect/Npcomprt/IR/NpcomprtOps.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h"
#include "npcomp/Dialect/RefBackend/IR/RefBackendOps.h"
using namespace mlir;
@ -32,10 +32,10 @@ static Type getABIMemrefType(Type type) {
// Creating module metadata.
//===----------------------------------------------------------------------===//
// Returns true if the function signature can be expressed with the npcomprt
// Returns true if the function signature can be expressed with the refbackrt
// ABI.
static bool expressibleWithNpcomprtABI(FunctionType type) {
// Currently, only memref types can be exposed at npcomprt ABI boundaries.
static bool expressibleWithRefbackrtABI(FunctionType type) {
// Currently, only memref types can be exposed at refbackrt ABI boundaries.
return llvm::all_of(
llvm::concat<const Type>(type.getInputs(), type.getResults()),
[](Type t) { return t.isa<MemRefType>(); });
@ -44,11 +44,11 @@ static bool expressibleWithNpcomprtABI(FunctionType type) {
static LogicalResult createModuleMetadata(ModuleOp module) {
auto moduleMetadata =
OpBuilder::atBlockBegin(module.getBody())
.create<npcomprt::ModuleMetadataOp>(module.getLoc());
.create<refbackrt::ModuleMetadataOp>(module.getLoc());
moduleMetadata.metadatas().push_back(new Block);
Block &metadatas = moduleMetadata.metadatas().front();
OpBuilder::atBlockEnd(&metadatas)
.create<npcomprt::ModuleMetadataTerminatorOp>(module.getLoc());
.create<refbackrt::ModuleMetadataTerminatorOp>(module.getLoc());
SymbolTable symbolTable(module);
auto builder = OpBuilder::atBlockBegin(&metadatas);
@ -59,13 +59,13 @@ static LogicalResult createModuleMetadata(ModuleOp module) {
}
// TODO: Add richer information here such as expected shapes and element
// types.
builder.create<npcomprt::FuncMetadataOp>(
builder.create<refbackrt::FuncMetadataOp>(
func.getLoc(), builder.getSymbolRefAttr(func.getName()),
builder.getI32IntegerAttr(func.getNumArguments()),
builder.getI32IntegerAttr(func.getNumResults()));
if (!expressibleWithNpcomprtABI(func.getType()))
return func.emitError() << "func not expressible with npcomprt ABI";
if (!expressibleWithRefbackrtABI(func.getType()))
return func.emitError() << "func not expressible with refbackrt ABI";
}
return success();
}
@ -81,8 +81,8 @@ public:
LogicalResult
matchAndRewrite(refback::GlobalOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<npcomprt::GlobalOp>(op, op.sym_name(),
op.value());
rewriter.replaceOpWithNewOp<refbackrt::GlobalOp>(op, op.sym_name(),
op.value());
return success();
}
};
@ -96,7 +96,7 @@ public:
LogicalResult
matchAndRewrite(refback::GetGlobalMemrefOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto abiMemref = rewriter.create<npcomprt::GetGlobalOp>(
auto abiMemref = rewriter.create<refbackrt::GetGlobalOp>(
op.getLoc(), getABIMemrefType(op.getType()), op.global());
// Cast back to the original type.
rewriter.replaceOpWithNewOp<MemRefCastOp>(op, abiMemref, op.getType());
@ -113,22 +113,22 @@ public:
matchAndRewrite(AssertOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
AssertOp::Adaptor adaptor(operands);
// The npcomprt runtime function aborts if the argument is true, rather than
// when it is false as an `assert` does. So negate the predicate (by xor'ing
// with 1).
// The refbackrt runtime function aborts if the argument is true, rather
// than when it is false as an `assert` does. So negate the predicate (by
// xor'ing with 1).
auto c1 = rewriter.create<ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getI1Type(),
APInt(/*numBits=*/1, /*val=*/1)));
Value assertFailed = rewriter.create<XOrOp>(op.getLoc(), adaptor.arg(), c1);
rewriter.replaceOpWithNewOp<npcomprt::AbortIfOp>(op, assertFailed,
op.msgAttr());
rewriter.replaceOpWithNewOp<refbackrt::AbortIfOp>(op, assertFailed,
op.msgAttr());
return success();
}
};
} // namespace
namespace {
// At ABI bondaries, use !npcomprt.tensor instead of memref.
// At ABI bondaries, use !refbackrt.tensor instead of memref.
class FuncOpSignatureConversion : public OpConversionPattern<FuncOp> {
public:
using OpConversionPattern::OpConversionPattern;
@ -159,7 +159,7 @@ public:
for (auto newAndOldArg :
llvm::zip(newEntry.getArguments(), oldEntry.getArguments())) {
std::tie(newArg, oldArg) = newAndOldArg;
auto abiMemref = rewriter.create<npcomprt::ToMemrefOp>(
auto abiMemref = rewriter.create<refbackrt::ToMemrefOp>(
op.getLoc(), getABIMemrefType(oldArg.getType()), newArg);
auto memref = rewriter.create<MemRefCastOp>(op.getLoc(), abiMemref,
oldArg.getType());
@ -172,7 +172,7 @@ public:
} // namespace
namespace {
// At the return ABI boundaries, convert to !npcomprt.tensor type.
// At the return ABI boundaries, convert to !refbackrt.tensor type.
// This pattern is needed to trigger the type conversion mechanics to do a
// target materialization.
class RewriteReturnOp : public OpConversionPattern<ReturnOp> {
@ -193,20 +193,20 @@ static LogicalResult doDialectConversion(ModuleOp module) {
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
typeConverter.addConversion([](MemRefType type) {
return npcomprt::TensorType::get(type.getContext());
return refbackrt::TensorType::get(type.getContext());
});
typeConverter.addTargetMaterialization(
[](OpBuilder &builder, npcomprt::TensorType type, ValueRange inputs,
[](OpBuilder &builder, refbackrt::TensorType type, ValueRange inputs,
Location loc) -> Value {
assert(inputs.size() == 1);
auto abiMemref = builder.create<MemRefCastOp>(
loc, inputs[0], getABIMemrefType(inputs[0].getType()));
return builder.create<npcomprt::FromMemrefOp>(loc, type, abiMemref);
return builder.create<refbackrt::FromMemrefOp>(loc, type, abiMemref);
});
OwningRewritePatternList patterns;
ConversionTarget target(*context);
target.addLegalDialect<npcomprt::NpcomprtDialect>();
target.addLegalDialect<refbackrt::RefbackrtDialect>();
target.addLegalDialect<StandardOpsDialect>();
patterns.insert<FuncOpSignatureConversion>(typeConverter, context);
@ -230,10 +230,11 @@ static LogicalResult doDialectConversion(ModuleOp module) {
namespace {
// This pass lowers the public ABI of the module to the primitives exposed by
// the npcomprt dialect.
class LowerToNpcomprtABI : public LowerToNpcomprtABIBase<LowerToNpcomprtABI> {
// the refbackrt dialect.
class LowerToRefbackrtABI
: public LowerToRefbackrtABIBase<LowerToRefbackrtABI> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<npcomprt::NpcomprtDialect>();
registry.insert<refbackrt::RefbackrtDialect>();
}
void runOnOperation() override {
@ -254,6 +255,6 @@ class LowerToNpcomprtABI : public LowerToNpcomprtABIBase<LowerToNpcomprtABI> {
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::NPCOMP::createLowerToNpcomprtABIPass() {
return std::make_unique<LowerToNpcomprtABI>();
mlir::NPCOMP::createLowerToRefbackrtABIPass() {
return std::make_unique<LowerToRefbackrtABI>();
}

View File

@ -292,12 +292,12 @@ void mlir::NPCOMP::createRefBackendLoweringPipeline(
pm.addPass(createLowerToCFGPass());
// Convert functions signatures and other constructs that interface with the
// runtime to the `npcomprt` dialect.
pm.addPass(createLowerToNpcomprtABIPass());
// runtime to the `refbackrt` dialect.
pm.addPass(createLowerToRefbackrtABIPass());
// Finally, convert to LLVM dialect using our custom LowerToLLVM pass
// which reuses the upstream patterns and gives us a place to add our own
// patterns for our own custom ops like the npcomprt ops.
// patterns for our own custom ops like the refbackrt ops.
pm.addPass(createLowerToLLVMPass());
// Although LLVM will clean everything up eventually, for the sake of IR

View File

@ -7,7 +7,7 @@ set(LLVM_OPTIONAL_SOURCES
)
# The library that users link against, defining basic interactions with an
# npcomprt module and the relevant data structures.
# refbackrt module and the relevant data structures.
add_mlir_library(NPCOMPRuntime
Runtime.cpp

View File

@ -17,7 +17,7 @@
#include <cstdint>
namespace npcomprt {
namespace refbackrt {
// All arguments are packed into this type-erased form for being invoked. See
// LowerToLLVM.cpp for more details.
@ -55,6 +55,6 @@ struct GlobalDescriptor {
void *data;
};
} // namespace npcomprt
} // namespace refbackrt
#endif // NPCOMP_LIB_RUNTIME_COMPILERDATASTRUCTURES_H
#endif // NPCOMP_LIB_RUNTIME_COMPILERDATASTRUCTURES_H

View File

@ -18,7 +18,7 @@
#include "CompilerDataStructures.h"
#include "npcomp/RefBackend/Runtime/UserAPI.h"
using namespace npcomprt;
using namespace refbackrt;
extern "C" void __npcomp_compiler_rt_abort_if(bool b, const char *msg) {
if (b) {

View File

@ -15,7 +15,7 @@
#include "CompilerDataStructures.h"
using namespace npcomprt;
using namespace refbackrt;
//===----------------------------------------------------------------------===//
// Tensor
@ -29,7 +29,7 @@ static std::int32_t totalElements(ArrayRef<std::int32_t> extents) {
return ret;
}
std::int32_t npcomprt::getElementTypeByteSize(ElementType type) {
std::int32_t refbackrt::getElementTypeByteSize(ElementType type) {
switch (type) {
case ElementType::F32:
return 4;
@ -85,9 +85,9 @@ static FuncDescriptor *getFuncDescriptor(ModuleDescriptor *moduleDescriptor,
return nullptr;
}
void npcomprt::invoke(ModuleDescriptor *moduleDescriptor,
StringRef functionName, ArrayRef<Ref<Tensor>> inputs,
MutableArrayRef<Ref<Tensor>> outputs) {
void refbackrt::invoke(ModuleDescriptor *moduleDescriptor,
StringRef functionName, ArrayRef<Ref<Tensor>> inputs,
MutableArrayRef<Ref<Tensor>> outputs) {
auto *descriptor = getFuncDescriptor(moduleDescriptor, functionName);
assert(descriptor && "unknown function name");
assert(inputs.size() < kMaxArity && "number of inputs exceeds kMaxArity");
@ -104,7 +104,7 @@ void npcomprt::invoke(ModuleDescriptor *moduleDescriptor,
for (int i = 0, e = outputs.size(); i < e; i++)
outputTensorPtrs[i] = static_cast<Tensor *>(packedOutputs[i]);
// TODO: Actually manage refcounts inside the compiler.
// Right now, we only pass around npcomprt.tensor's in trivial ways on ABI
// Right now, we only pass around refbackrt.tensor's in trivial ways on ABI
// boundaries, so the following contract of the compiler-generated code works:
// - input tensors are never retained or released
// - output tensors always have refcount 0. Hence the next line here is
@ -113,9 +113,9 @@ void npcomprt::invoke(ModuleDescriptor *moduleDescriptor,
outputs[i] = Ref<Tensor>(outputTensorPtrs[i]);
}
LogicalResult npcomprt::getMetadata(ModuleDescriptor *moduleDescriptor,
StringRef functionName,
FunctionMetadata &outMetadata) {
LogicalResult refbackrt::getMetadata(ModuleDescriptor *moduleDescriptor,
StringRef functionName,
FunctionMetadata &outMetadata) {
auto *descriptor = getFuncDescriptor(moduleDescriptor, functionName);
if (!descriptor)
return failure();

View File

@ -1,43 +0,0 @@
// RUN: npcomp-opt <%s -split-input-file -verify-diagnostics
npcomprt.module_metadata {
// expected-error @+1 {{must reference a valid func}}
npcomprt.func_metadata {funcName = @g, numInputs = 1 : i32, numOutputs = 0 : i32}
}
// -----
npcomprt.module_metadata {
// expected-error @+1 {{must agree on number of inputs}}
npcomprt.func_metadata {funcName = @f, numInputs = 1 : i32, numOutputs = 0 : i32}
}
func @f() { return }
// -----
npcomprt.module_metadata {
// expected-error @+1 {{must agree on number of outputs}}
npcomprt.func_metadata {funcName = @f, numInputs = 0 : i32, numOutputs = 1 : i32}
}
func @f() { return }
// -----
npcomprt.global @g dense<0.0> : tensor<2xf32>
func @f() {
// expected-error @+1 {{must reference a valid npcomprt.global}}
npcomprt.get_global @nonexistent_symbol : memref<*xf32>
return
}
// -----
npcomprt.global @g dense<0.0> : tensor<2xf32>
func @f() {
// expected-error @+1 {{inconsistent with element type of global}}
npcomprt.get_global @g : memref<*xi8>
return
}

View File

@ -1,20 +0,0 @@
// RUN: npcomp-opt <%s | npcomp-opt | FileCheck %s --dump-input=fail
// CHECK: npcomprt.module_metadata
npcomprt.module_metadata {
// CHECK: npcomprt.func_metadata
npcomprt.func_metadata {funcName = @f, numInputs = 1 : i32, numOutputs = 0 : i32}
}
// CHECK-LABEL: func @f
// CHECK-SAME: !npcomprt.tensor
func @f(%arg0: !npcomprt.tensor) {
return
}
// CHECK-LABEL: npcomprt.global @g dense<0.0{{.*}}> : tensor<10xf32>
npcomprt.global @g dense<0.0> : tensor<10xf32>
func @uses_global() {
npcomprt.get_global @g : memref<*xf32>
return
}

View File

@ -0,0 +1,43 @@
// RUN: npcomp-opt <%s -split-input-file -verify-diagnostics
refbackrt.module_metadata {
// expected-error @+1 {{must reference a valid func}}
refbackrt.func_metadata {funcName = @g, numInputs = 1 : i32, numOutputs = 0 : i32}
}
// -----
refbackrt.module_metadata {
// expected-error @+1 {{must agree on number of inputs}}
refbackrt.func_metadata {funcName = @f, numInputs = 1 : i32, numOutputs = 0 : i32}
}
func @f() { return }
// -----
refbackrt.module_metadata {
// expected-error @+1 {{must agree on number of outputs}}
refbackrt.func_metadata {funcName = @f, numInputs = 0 : i32, numOutputs = 1 : i32}
}
func @f() { return }
// -----
refbackrt.global @g dense<0.0> : tensor<2xf32>
func @f() {
// expected-error @+1 {{must reference a valid refbackrt.global}}
refbackrt.get_global @nonexistent_symbol : memref<*xf32>
return
}
// -----
refbackrt.global @g dense<0.0> : tensor<2xf32>
func @f() {
// expected-error @+1 {{inconsistent with element type of global}}
refbackrt.get_global @g : memref<*xi8>
return
}

View File

@ -0,0 +1,20 @@
// RUN: npcomp-opt <%s | npcomp-opt | FileCheck %s --dump-input=fail
// CHECK: refbackrt.module_metadata
refbackrt.module_metadata {
// CHECK: refbackrt.func_metadata
refbackrt.func_metadata {funcName = @f, numInputs = 1 : i32, numOutputs = 0 : i32}
}
// CHECK-LABEL: func @f
// CHECK-SAME: !refbackrt.tensor
func @f(%arg0: !refbackrt.tensor) {
return
}
// CHECK-LABEL: refbackrt.global @g dense<0.0{{.*}}> : tensor<10xf32>
refbackrt.global @g dense<0.0> : tensor<10xf32>
func @uses_global() {
refbackrt.get_global @g : memref<*xf32>
return
}

View File

@ -5,17 +5,17 @@
// CHECK: llvm.func @__npcomp_compiler_rt_to_memref(!llvm.ptr<i8>) -> !llvm.struct<(i64, ptr<i8>)>
// CHECK: llvm.func @__npcomp_compiler_rt_from_memref(!llvm.i64, !llvm.ptr<i8>) -> !llvm.ptr<i8>
// CHECK: llvm.func @__npcomp_compiler_rt_get_global(!llvm.ptr<struct<(i32, ptr<i32>, ptr<i8>)>>) -> !llvm.struct<(i64, ptr<i8>)>
// CHECK: llvm.mlir.global internal constant @__npcomprt_global_data_buffer_g(dense<7.000000e+00> : tensor<3xf32>) : !llvm.array<3 x float>
// CHECK: llvm.mlir.global internal constant @__npcomprt_global_extents_g(dense<3> : tensor<1xi32>) : !llvm.array<1 x i32>
// CHECK: llvm.mlir.global internal constant @__refbackrt_global_data_buffer_g(dense<7.000000e+00> : tensor<3xf32>) : !llvm.array<3 x float>
// CHECK: llvm.mlir.global internal constant @__refbackrt_global_extents_g(dense<3> : tensor<1xi32>) : !llvm.array<1 x i32>
// CHECK-LABEL: llvm.mlir.global internal constant @g() : !llvm.struct<(i32, ptr<i32>, ptr<i8>)> {
// CHECK: %[[VAL_0:.*]] = llvm.mlir.undef : !llvm.struct<(i32, ptr<i32>, ptr<i8>)>
// CHECK: %[[VAL_1:.*]] = llvm.mlir.constant(1 : i32) : !llvm.i32
// CHECK: %[[VAL_2:.*]] = llvm.insertvalue %[[VAL_1]], %[[VAL_0]][0 : i32] : !llvm.struct<(i32, ptr<i32>, ptr<i8>)>
// CHECK: %[[VAL_3:.*]] = llvm.mlir.addressof @__npcomprt_global_extents_g : !llvm.ptr<array<1 x i32>>
// CHECK: %[[VAL_3:.*]] = llvm.mlir.addressof @__refbackrt_global_extents_g : !llvm.ptr<array<1 x i32>>
// CHECK: %[[VAL_4:.*]] = llvm.bitcast %[[VAL_3]] : !llvm.ptr<array<1 x i32>> to !llvm.ptr<i32>
// CHECK: %[[VAL_5:.*]] = llvm.insertvalue %[[VAL_4]], %[[VAL_2]][1 : i32] : !llvm.struct<(i32, ptr<i32>, ptr<i8>)>
// CHECK: %[[VAL_6:.*]] = llvm.mlir.addressof @__npcomprt_global_data_buffer_g : !llvm.ptr<array<3 x float>>
// CHECK: %[[VAL_6:.*]] = llvm.mlir.addressof @__refbackrt_global_data_buffer_g : !llvm.ptr<array<3 x float>>
// CHECK: %[[VAL_7:.*]] = llvm.bitcast %[[VAL_6]] : !llvm.ptr<array<3 x float>> to !llvm.ptr<i8>
// CHECK: %[[VAL_8:.*]] = llvm.insertvalue %[[VAL_7]], %[[VAL_5]][2 : i32] : !llvm.struct<(i32, ptr<i32>, ptr<i8>)>
// CHECK: llvm.return %[[VAL_8]] : !llvm.struct<(i32, ptr<i32>, ptr<i8>)>
@ -44,15 +44,15 @@
// CHECK: %[[VAL_18:.*]] = llvm.insertvalue %[[VAL_13]], %[[VAL_17]][1] : !llvm.struct<(i64, ptr<i8>)>
// CHECK: llvm.return %[[VAL_18]] : !llvm.struct<(i64, ptr<i8>)>
// CHECK: }
npcomprt.global @g dense<7.000000e+00> : tensor<3xf32>
refbackrt.global @g dense<7.000000e+00> : tensor<3xf32>
func @calls_get_global() -> memref<*xf32> {
%0 = npcomprt.get_global @g : memref<*xf32>
%0 = refbackrt.get_global @g : memref<*xf32>
return %0 : memref<*xf32>
}
// -----
// For scalars, we have to fake-up a size-1 data buffer array to make LLVM translation happy.
// CHECK: llvm.mlir.global internal constant @__npcomprt_global_data_buffer_g(dense<7.000000e+00> : tensor<f32>) : !llvm.array<1 x float>
// CHECK: llvm.mlir.global internal constant @__npcomprt_global_extents_g(dense<0> : tensor<1xi32>) : !llvm.array<1 x i32>
npcomprt.global @g dense<7.0> : tensor<f32>
// CHECK: llvm.mlir.global internal constant @__refbackrt_global_data_buffer_g(dense<7.000000e+00> : tensor<f32>) : !llvm.array<1 x float>
// CHECK: llvm.mlir.global internal constant @__refbackrt_global_extents_g(dense<0> : tensor<1xi32>) : !llvm.array<1 x i32>
refbackrt.global @g dense<7.0> : tensor<f32>

View File

@ -1,6 +1,6 @@
// RUN: npcomp-opt -refback-lower-to-llvm -split-input-file <%s | FileCheck %s --dump-input=fail
// CHECK-LABEL: llvm.func @__npcomprt_wrapper_identity(
// CHECK-LABEL: llvm.func @__refbackrt_wrapper_identity(
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<ptr<i8>>,
// CHECK-SAME: %[[VAL_1:.*]]: !llvm.ptr<ptr<i8>>) {
// CHECK: %[[VAL_2:.*]] = llvm.mlir.constant(0 : i32) : !llvm.i32
@ -28,7 +28,7 @@
// CHECK: %[[VAL_4:.*]] = llvm.mlir.addressof @__npcomp_internal_constant_identity : !llvm.ptr<array<8 x i8>>
// CHECK: %[[VAL_5:.*]] = llvm.getelementptr %[[VAL_4]]{{\[}}%[[VAL_1]], %[[VAL_1]]] : (!llvm.ptr<array<8 x i8>>, !llvm.i32, !llvm.i32) -> !llvm.ptr<i8>
// CHECK: %[[VAL_6:.*]] = llvm.insertvalue %[[VAL_5]], %[[VAL_3]][0 : i32, 1 : i32] : !llvm.array<1 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_7:.*]] = llvm.mlir.addressof @__npcomprt_wrapper_identity : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_7:.*]] = llvm.mlir.addressof @__refbackrt_wrapper_identity : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_8:.*]] = llvm.bitcast %[[VAL_7]] : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>> to !llvm.ptr<i8>
// CHECK: %[[VAL_9:.*]] = llvm.insertvalue %[[VAL_8]], %[[VAL_6]][0 : i32, 2 : i32] : !llvm.array<1 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_10:.*]] = llvm.mlir.constant(1 : i32) : !llvm.i32
@ -48,8 +48,8 @@
// CHECK: llvm.return %[[VAL_5]] : !llvm.struct<(i32, ptr<struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>)>
// CHECK: }
npcomprt.module_metadata {
npcomprt.func_metadata {funcName = @identity, numInputs = 1 : i32, numOutputs = 1 : i32}
refbackrt.module_metadata {
refbackrt.func_metadata {funcName = @identity, numInputs = 1 : i32, numOutputs = 1 : i32}
}
@ -57,15 +57,15 @@ npcomprt.module_metadata {
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>) -> !llvm.ptr<i8> {
// CHECK: llvm.return %[[VAL_0]] : !llvm.ptr<i8>
// CHECK: }
func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
return %arg0 : !npcomprt.tensor
func @identity(%arg0: !refbackrt.tensor) -> !refbackrt.tensor {
return %arg0 : !refbackrt.tensor
}
// -----
// Test input/output arg marshaling.
// CHECK-LABEL: llvm.func @__npcomprt_wrapper_inputs1results2(
// CHECK-LABEL: llvm.func @__refbackrt_wrapper_inputs1results2(
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<ptr<i8>>,
// CHECK-SAME: %[[VAL_1:.*]]: !llvm.ptr<ptr<i8>>) {
// CHECK: %[[VAL_2:.*]] = llvm.mlir.constant(0 : i32) : !llvm.i32
@ -86,7 +86,7 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: llvm.return
// CHECK: }
// CHECK-LABEL: llvm.func @__npcomprt_wrapper_inputs1results1(
// CHECK-LABEL: llvm.func @__refbackrt_wrapper_inputs1results1(
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<ptr<i8>>,
// CHECK-SAME: %[[VAL_1:.*]]: !llvm.ptr<ptr<i8>>) {
// CHECK: %[[VAL_2:.*]] = llvm.mlir.constant(0 : i32) : !llvm.i32
@ -101,7 +101,7 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: llvm.return
// CHECK: }
// CHECK-LABEL: llvm.func @__npcomprt_wrapper_inputs1results0(
// CHECK-LABEL: llvm.func @__refbackrt_wrapper_inputs1results0(
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<ptr<i8>>,
// CHECK-SAME: %[[VAL_1:.*]]: !llvm.ptr<ptr<i8>>) {
// CHECK: %[[VAL_2:.*]] = llvm.mlir.constant(0 : i32) : !llvm.i32
@ -127,7 +127,7 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: %[[VAL_4:.*]] = llvm.mlir.addressof @__npcomp_internal_constant_inputs1results0 : !llvm.ptr<array<15 x i8>>
// CHECK: %[[VAL_5:.*]] = llvm.getelementptr %[[VAL_4]]{{\[}}%[[VAL_1]], %[[VAL_1]]] : (!llvm.ptr<array<15 x i8>>, !llvm.i32, !llvm.i32) -> !llvm.ptr<i8>
// CHECK: %[[VAL_6:.*]] = llvm.insertvalue %[[VAL_5]], %[[VAL_3]][0 : i32, 1 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_7:.*]] = llvm.mlir.addressof @__npcomprt_wrapper_inputs1results0 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_7:.*]] = llvm.mlir.addressof @__refbackrt_wrapper_inputs1results0 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_8:.*]] = llvm.bitcast %[[VAL_7]] : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>> to !llvm.ptr<i8>
// CHECK: %[[VAL_9:.*]] = llvm.insertvalue %[[VAL_8]], %[[VAL_6]][0 : i32, 2 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_10:.*]] = llvm.mlir.constant(1 : i32) : !llvm.i32
@ -139,7 +139,7 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: %[[VAL_16:.*]] = llvm.mlir.addressof @__npcomp_internal_constant_inputs1results1 : !llvm.ptr<array<15 x i8>>
// CHECK: %[[VAL_17:.*]] = llvm.getelementptr %[[VAL_16]]{{\[}}%[[VAL_1]], %[[VAL_1]]] : (!llvm.ptr<array<15 x i8>>, !llvm.i32, !llvm.i32) -> !llvm.ptr<i8>
// CHECK: %[[VAL_18:.*]] = llvm.insertvalue %[[VAL_17]], %[[VAL_15]][1 : i32, 1 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_19:.*]] = llvm.mlir.addressof @__npcomprt_wrapper_inputs1results1 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_19:.*]] = llvm.mlir.addressof @__refbackrt_wrapper_inputs1results1 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_20:.*]] = llvm.bitcast %[[VAL_19]] : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>> to !llvm.ptr<i8>
// CHECK: %[[VAL_21:.*]] = llvm.insertvalue %[[VAL_20]], %[[VAL_18]][1 : i32, 2 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_22:.*]] = llvm.mlir.constant(1 : i32) : !llvm.i32
@ -151,7 +151,7 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: %[[VAL_28:.*]] = llvm.mlir.addressof @__npcomp_internal_constant_inputs1results2 : !llvm.ptr<array<15 x i8>>
// CHECK: %[[VAL_29:.*]] = llvm.getelementptr %[[VAL_28]]{{\[}}%[[VAL_1]], %[[VAL_1]]] : (!llvm.ptr<array<15 x i8>>, !llvm.i32, !llvm.i32) -> !llvm.ptr<i8>
// CHECK: %[[VAL_30:.*]] = llvm.insertvalue %[[VAL_29]], %[[VAL_27]][2 : i32, 1 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_31:.*]] = llvm.mlir.addressof @__npcomprt_wrapper_inputs1results2 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_31:.*]] = llvm.mlir.addressof @__refbackrt_wrapper_inputs1results2 : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>>
// CHECK: %[[VAL_32:.*]] = llvm.bitcast %[[VAL_31]] : !llvm.ptr<func<void (ptr<ptr<i8>>, ptr<ptr<i8>>)>> to !llvm.ptr<i8>
// CHECK: %[[VAL_33:.*]] = llvm.insertvalue %[[VAL_32]], %[[VAL_30]][2 : i32, 2 : i32] : !llvm.array<3 x struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>
// CHECK: %[[VAL_34:.*]] = llvm.mlir.constant(1 : i32) : !llvm.i32
@ -171,10 +171,10 @@ func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: llvm.return %[[VAL_5]] : !llvm.struct<(i32, ptr<struct<(i32, ptr<i8>, ptr<i8>, i32, i32)>>)>
// CHECK: }
npcomprt.module_metadata {
npcomprt.func_metadata {funcName = @inputs1results0, numInputs = 1 : i32, numOutputs = 0 : i32}
npcomprt.func_metadata {funcName = @inputs1results1, numInputs = 1 : i32, numOutputs = 1 : i32}
npcomprt.func_metadata {funcName = @inputs1results2, numInputs = 1 : i32, numOutputs = 2 : i32}
refbackrt.module_metadata {
refbackrt.func_metadata {funcName = @inputs1results0, numInputs = 1 : i32, numOutputs = 0 : i32}
refbackrt.func_metadata {funcName = @inputs1results1, numInputs = 1 : i32, numOutputs = 1 : i32}
refbackrt.func_metadata {funcName = @inputs1results2, numInputs = 1 : i32, numOutputs = 2 : i32}
}
@ -183,7 +183,7 @@ npcomprt.module_metadata {
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>) {
// CHECK: llvm.return
// CHECK: }
func @inputs1results0(%arg0: !npcomprt.tensor) {
func @inputs1results0(%arg0: !refbackrt.tensor) {
return
}
@ -191,8 +191,8 @@ func @inputs1results0(%arg0: !npcomprt.tensor) {
// CHECK-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>) -> !llvm.ptr<i8> {
// CHECK: llvm.return %[[VAL_0]] : !llvm.ptr<i8>
// CHECK: }
func @inputs1results1(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
return %arg0 : !npcomprt.tensor
func @inputs1results1(%arg0: !refbackrt.tensor) -> !refbackrt.tensor {
return %arg0 : !refbackrt.tensor
}
// CHECK-LABEL: llvm.func @inputs1results2(
@ -202,8 +202,8 @@ func @inputs1results1(%arg0: !npcomprt.tensor) -> !npcomprt.tensor {
// CHECK: %[[VAL_3:.*]] = llvm.insertvalue %[[VAL_0]], %[[VAL_2]][1] : !llvm.struct<(ptr<i8>, ptr<i8>)>
// CHECK: llvm.return %[[VAL_3]] : !llvm.struct<(ptr<i8>, ptr<i8>)>
// CHECK: }
func @inputs1results2(%arg0: !npcomprt.tensor) -> (!npcomprt.tensor, !npcomprt.tensor) {
return %arg0, %arg0 : !npcomprt.tensor, !npcomprt.tensor
func @inputs1results2(%arg0: !refbackrt.tensor) -> (!refbackrt.tensor, !refbackrt.tensor) {
return %arg0, %arg0 : !refbackrt.tensor, !refbackrt.tensor
}
@ -226,7 +226,7 @@ func @inputs1results2(%arg0: !npcomprt.tensor) -> (!npcomprt.tensor, !npcomprt.t
// CHECK: llvm.return
func @calls_abort_if(%arg0: i1) {
npcomprt.abort_if %arg0, "msg"
refbackrt.abort_if %arg0, "msg"
return
}
@ -235,8 +235,8 @@ func @calls_abort_if(%arg0: i1) {
// CHECK: %[[VAL_1:.*]] = llvm.call @__npcomp_compiler_rt_to_memref(%[[VAL_0]]) : (!llvm.ptr<i8>) -> !llvm.struct<(i64, ptr<i8>)>
// CHECK: llvm.return
// CHECK: }
func @calls_to_memref(%arg0: !npcomprt.tensor) {
%0 = npcomprt.to_memref %arg0 : memref<*xf32>
func @calls_to_memref(%arg0: !refbackrt.tensor) {
%0 = refbackrt.to_memref %arg0 : memref<*xf32>
return
}
@ -251,7 +251,7 @@ func @calls_to_memref(%arg0: !npcomprt.tensor) {
// CHECK: %[[VAL_7:.*]] = llvm.call @__npcomp_compiler_rt_from_memref(%[[VAL_5]], %[[VAL_6]]) : (!llvm.i64, !llvm.ptr<i8>) -> !llvm.ptr<i8>
// CHECK: llvm.return %[[VAL_7]] : !llvm.ptr<i8>
// CHECK: }
func @calls_from_memref(%arg0: memref<*xf32>) -> !npcomprt.tensor {
%0 = npcomprt.from_memref %arg0 : memref<*xf32>
return %0 : !npcomprt.tensor
func @calls_from_memref(%arg0: memref<*xf32>) -> !refbackrt.tensor {
%0 = refbackrt.from_memref %arg0 : memref<*xf32>
return %0 : !refbackrt.tensor
}

View File

@ -1,10 +1,10 @@
// RUN: npcomp-opt -lower-to-npcomprt-abi -split-input-file -verify-diagnostics <%s | FileCheck %s --dump-input=fail
// RUN: npcomp-opt -lower-to-refbackrt-abi -split-input-file -verify-diagnostics <%s | FileCheck %s --dump-input=fail
// Test module metadata.
// CHECK: npcomprt.module_metadata
// CHECK-NEXT: npcomprt.func_metadata {funcName = @f_2inputs_0outputs, numInputs = 2 : i32, numOutputs = 0 : i32}
// CHECK-NEXT: npcomprt.func_metadata {funcName = @f_1input_2outputs, numInputs = 1 : i32, numOutputs = 2 : i32}
// CHECK: refbackrt.module_metadata
// CHECK-NEXT: refbackrt.func_metadata {funcName = @f_2inputs_0outputs, numInputs = 2 : i32, numOutputs = 0 : i32}
// CHECK-NEXT: refbackrt.func_metadata {funcName = @f_1input_2outputs, numInputs = 1 : i32, numOutputs = 2 : i32}
// This function only exists to test its metadata above.
func @f_2inputs_0outputs(%arg0: memref<?xf32>, %arg1: memref<?xf32>) {
@ -20,12 +20,12 @@ func @f_1input_2outputs(%arg0: memref<?xf32>) -> (memref<?xf32>, memref<?xf32>)
// Test ABI conversions.
// CHECK-LABEL: func @identity(%arg0: !npcomprt.tensor) -> !npcomprt.tensor
// CHECK-LABEL: func @identity(%arg0: !refbackrt.tensor) -> !refbackrt.tensor
func @identity(%arg0: memref<?xf32>) -> memref<?xf32> {
// The argument materialization.
// In this test case, these go unused since, as described below, the new
// argument value is seen immediately by the return op for some reason.
// CHECK-NEXT: %[[INABIMEMREF:.*]] = npcomprt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[INABIMEMREF:.*]] = refbackrt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[MEMREF:.*]] = memref_cast %[[INABIMEMREF]] : memref<*xf32> to memref<?xf32>
// TODO: Why do these target materializations not happen in this particular
@ -34,7 +34,7 @@ func @identity(%arg0: memref<?xf32>) -> memref<?xf32> {
// rather than the result of replaceUsesOfBlockArgument from
// FuncOpSignatureConversion
// Cxxxx-NEXT: %[[OUTABIMEMREF:.*]] = memref_cast %[[MEMREF]] : memref<?xf32> to memref<*xf32>
// Cxxxx-NEXT: %[[RET:.*]] = npcomprt.from_memref %[[OUTABIMEMREF]] : memref<*xf32>
// Cxxxx-NEXT: %[[RET:.*]] = refbackrt.from_memref %[[OUTABIMEMREF]] : memref<*xf32>
// Cxxxx-NEXT: return %[[RET]]
// CHECK-NEXT: return %arg0
@ -44,9 +44,9 @@ func @identity(%arg0: memref<?xf32>) -> memref<?xf32> {
// -----
// CHECK-LABEL: func @use_of_arg(%arg0: !npcomprt.tensor)
// CHECK-LABEL: func @use_of_arg(%arg0: !refbackrt.tensor)
func @use_of_arg(%arg0: memref<?xf32>) {
// CHECK-NEXT: %[[INABIMEMREF:.*]] = npcomprt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[INABIMEMREF:.*]] = refbackrt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[MEMREF:.*]] = memref_cast %[[INABIMEMREF]] : memref<*xf32> to memref<?xf32>
%c0 = constant 0 : index
%0 = dim %arg0, %c0 : memref<?xf32>
@ -57,32 +57,32 @@ func @use_of_arg(%arg0: memref<?xf32>) {
// -----
// CHECK-LABEL: func @multiple_blocks(%arg0: !npcomprt.tensor) -> !npcomprt.tensor
// CHECK-LABEL: func @multiple_blocks(%arg0: !refbackrt.tensor) -> !refbackrt.tensor
func @multiple_blocks(%arg0: memref<?xf32>) -> memref<?xf32> {
// CHECK-NEXT: %[[INABIMEMREF:.*]] = npcomprt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[INABIMEMREF:.*]] = refbackrt.to_memref %arg0 : memref<*xf32>
// CHECK-NEXT: %[[INMEMREF:.*]] = memref_cast %[[INABIMEMREF]] : memref<*xf32> to memref<?xf32>
// CHECK-NEXT: br ^bb1(%[[INMEMREF]] : memref<?xf32>)
br ^bb1(%arg0: memref<?xf32>)
// CHECK-NEXT: ^bb1(%[[BBARG:.*]]: memref<?xf32>):
^bb1(%bbarg: memref<?xf32>):
// CHECK-NEXT: %[[OUTMEMREF:.*]] = memref_cast %[[BBARG]] : memref<?xf32> to memref<*xf32>
// CHECK-NEXT: %[[OUTABIMEMREF:.*]] = npcomprt.from_memref %[[OUTMEMREF]] : memref<*xf32>
// CHECK-NEXT: return %[[OUTABIMEMREF]] : !npcomprt.tensor
// CHECK-NEXT: %[[OUTABIMEMREF:.*]] = refbackrt.from_memref %[[OUTMEMREF]] : memref<*xf32>
// CHECK-NEXT: return %[[OUTABIMEMREF]] : !refbackrt.tensor
return %bbarg : memref<?xf32>
}
// -----
// CHECK: npcomprt.global @g dense<7.000000e+00> : tensor<10xf32>
// CHECK: refbackrt.global @g dense<7.000000e+00> : tensor<10xf32>
refback.global @g dense<7.0> : tensor<10xf32>
// CHECK-LABEL: func @gets_global() -> !npcomprt.tensor
// CHECK-LABEL: func @gets_global() -> !refbackrt.tensor
func @gets_global() -> memref<10xf32> {
// CHECK: %[[GMEMREF:.*]] = npcomprt.get_global @g : memref<*xf32>
// CHECK: %[[GMEMREF:.*]] = refbackrt.get_global @g : memref<*xf32>
// CHECK: %[[ORIGMEMREF:.*]] = memref_cast %[[GMEMREF]] : memref<*xf32> to memref<10xf32>
// CHECK: %[[OUTABIMEMREF:.*]] = memref_cast %[[ORIGMEMREF:.*]] : memref<10xf32> to memref<*xf32>
// CHECK: %[[RET:.*]] = npcomprt.from_memref %[[OUTABIMEMREF]] : memref<*xf32>
// CHECK: return %[[RET]] : !npcomprt.tensor
// CHECK: %[[RET:.*]] = refbackrt.from_memref %[[OUTABIMEMREF]] : memref<*xf32>
// CHECK: return %[[RET]] : !refbackrt.tensor
%0 = refback.get_global_memref @g : memref<10xf32>
return %0 : memref<10xf32>
}
@ -91,7 +91,7 @@ func @gets_global() -> memref<10xf32> {
// Test diagnostics.
// expected-error @+1 {{func not expressible with npcomprt ABI}}
// expected-error @+1 {{func not expressible with refbackrt ABI}}
func @unhandled_abi_type_on_public_func(%arg0: i32) {
return
}

View File

@ -73,32 +73,30 @@ invokeJITModuleWithATenTensors(npcomp::JITModule &jitModule,
std::vector<at::TensorArg> tensorArgs;
for (auto arg : llvm::enumerate(args))
tensorArgs.push_back(at::TensorArg(arg.value(), "arg", arg.index()));
at::CheckedFrom c = "converting to npcomprt::Tensor";
at::CheckedFrom c = "converting to refbackrt::Tensor";
for (auto &tensorArg : tensorArgs)
at::checkScalarType(c, tensorArg, at::ScalarType::Float);
at::checkAllContiguous(c, tensorArgs);
SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6> npcomprtInputs;
SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6> refbackInputs;
for (at::Tensor arg : args) {
SmallVector<int32_t, 6> extents(arg.sizes().begin(), arg.sizes().end());
float *data = arg.storage().data<float>();
// This does a deep copy of the data. Let's see if it shows up on the
// profile.
npcomprtInputs.push_back(npcomprt::Tensor::create(
npcomprt::ArrayRef<int32_t>(extents.data(), extents.size()),
npcomprt::ElementType::F32, data));
refbackInputs.push_back(refbackrt::Tensor::create(
refbackrt::ArrayRef<int32_t>(extents.data(), extents.size()),
refbackrt::ElementType::F32, data));
}
// Invoke the RefBackend function.
// TODO: The mishmash of terminology "npcomprt", "refback", "npcomp" in this
// file is getting out of hand.
auto expectedOutputs = jitModule.invoke(invokeFunction, npcomprtInputs);
auto expectedOutputs = jitModule.invoke(invokeFunction, refbackInputs);
if (!expectedOutputs)
return expectedOutputs.takeError();
auto npcomprtOutputs = std::move(*expectedOutputs);
auto refbackrtOutputs = std::move(*expectedOutputs);
std::vector<at::Tensor> results;
for (auto output : npcomprtOutputs) {
for (auto output : refbackrtOutputs) {
std::vector<int64_t> sizes(output->getExtents().data(),
output->getExtents().data() +
output->getExtents().size());

View File

@ -35,7 +35,7 @@ static Error make_string_error(const Twine &message) {
llvm::inconvertibleErrorCode());
}
static Expected<npcomprt::Ref<npcomprt::Tensor>>
static Expected<refbackrt::Ref<refbackrt::Tensor>>
convertAttrToTensor(Attribute attr) {
auto type = attr.getType().dyn_cast<RankedTensorType>();
if (!type)
@ -47,18 +47,18 @@ convertAttrToTensor(Attribute attr) {
if (elementType.isF32()) {
auto values = llvm::to_vector<100>(llvm::map_range(
denseFp, [](APFloat f) { return f.convertToFloat(); }));
return npcomprt::Tensor::create(
npcomprt::ArrayRef<std::int32_t>(extents.data(), extents.size()),
npcomprt::ElementType::F32, static_cast<void *>(values.data()));
return refbackrt::Tensor::create(
refbackrt::ArrayRef<std::int32_t>(extents.data(), extents.size()),
refbackrt::ElementType::F32, static_cast<void *>(values.data()));
}
}
return make_string_error("unhandled argument");
}
static Expected<SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6>>
static Expected<SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6>>
createInputs(ArrayRef<StringRef> argValues) {
MLIRContext context;
SmallVector<npcomprt::Ref<npcomprt::Tensor>, 6> ret;
SmallVector<refbackrt::Ref<refbackrt::Tensor>, 6> ret;
for (auto argValue : argValues) {
auto attr = parseAttribute(argValue, &context);
if (!attr)
@ -71,14 +71,14 @@ createInputs(ArrayRef<StringRef> argValues) {
return ret;
}
static Type convertToMLIRType(npcomprt::ElementType type, Builder &builder) {
static Type convertToMLIRType(refbackrt::ElementType type, Builder &builder) {
switch (type) {
case npcomprt::ElementType::F32:
case refbackrt::ElementType::F32:
return builder.getF32Type();
}
}
static RankedTensorType getCorrespondingMLIRTensorType(npcomprt::Tensor &tensor,
static RankedTensorType getCorrespondingMLIRTensorType(refbackrt::Tensor &tensor,
Builder &builder) {
auto elementType = convertToMLIRType(tensor.getElementType(), builder);
SmallVector<int64_t, 6> extents;
@ -87,11 +87,11 @@ static RankedTensorType getCorrespondingMLIRTensorType(npcomprt::Tensor &tensor,
return RankedTensorType::get(extents, elementType);
}
static Attribute convertToMLIRAttribute(npcomprt::Tensor &tensor,
static Attribute convertToMLIRAttribute(refbackrt::Tensor &tensor,
Builder &builder) {
RankedTensorType type = getCorrespondingMLIRTensorType(tensor, builder);
switch (tensor.getElementType()) {
case npcomprt::ElementType::F32: {
case refbackrt::ElementType::F32: {
SmallVector<float, 100> values;
auto *basePtr = tensor.getData<float>();
for (int i = 0, e = type.getNumElements(); i < e; i++)
@ -101,14 +101,14 @@ static Attribute convertToMLIRAttribute(npcomprt::Tensor &tensor,
}
}
static void printOutput(npcomprt::Tensor &tensor, llvm::raw_ostream &os) {
static void printOutput(refbackrt::Tensor &tensor, llvm::raw_ostream &os) {
MLIRContext context;
Builder builder(&context);
auto attr = convertToMLIRAttribute(tensor, builder);
attr.print(os);
}
static void printOutputs(ArrayRef<npcomprt::Ref<npcomprt::Tensor>> outputs,
static void printOutputs(ArrayRef<refbackrt::Ref<refbackrt::Tensor>> outputs,
llvm::raw_ostream &os) {
for (auto output : llvm::enumerate(outputs)) {
os << "output #" << output.index() << ": ";